В условии ошибка: ВС ║AD, а не АС, так как параллельные прямые не могут проходить через одну точку.
BF = DE по условию,
∠AED = ∠CFB по условию,
∠CBF = ∠ADE как накрест лежащие при пересечении параллельных прямых ВС и AD секущей BD, ⇒
ΔCBF = ΔADE по стороне и двум прилежащим к ней углам.
Значит CF = AE,
BE = BF - EF, DF = DE - EF, а так как BF = DE, то и BE = DF,
∠CFD = ∠AEB как смежные с равными углами (∠AED = ∠CFB по условию),
значит ΔCFD = ΔAEB по двум сторонам и углу между ними.
Тогда ∠АВЕ = ∠CDF, а эти углы - накрест лежащие при пересечении прямых АВ и CD секущей BD, значит АВ║CD.
Поделитесь своими знаниями, ответьте на вопрос:
1.угол авс равен 52 градуса. через точки а и в проведены прямые ad и bk, перпендикулярные к прямой bc (точки а и к лежат по одну сторону от вс найти угол ваd. и найти угол bka, если угол bak равен 40 градусам. 2. отрезок mn пересекается с кр в точке о, так что mo=no и kn паралельно мр.доказать, что km и np
Т.к. прямые параллельны, то сумма внутренних односторонних углов равна 180 градусов (назовём их целыми односторонними углами), а сумма односторонних углов, разбитых биссектрисами (нецелых односторонних углов), равна 180 / 2 = 90 (градусов).
При пересечении биссектрис образуется треугольник, в котором два угла мы уже определили (они равны по 45 градусов каждый, т.к. 90 / 2 = 45). Осталось определить третий угол образовавшегося треугольника, т.е. угол между биссектрисами внутренних односторонних углов. Он равен: 180 - 90 = 90 (градусов).