Визуализация синуса
Запоминание через понимание
Смотрим определение синуса в учебнике геометрии. "Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе".
Дает ли это определение понимание синуса? Нет, не дает. Определение не полное. Потому что оно рассматривает только частный случай треугольника - прямоугольный треугольник.
Смотрим определение синуса в учебнике алгебры. "Ордината точки Р, полученной при повороте точки Р (1;0) вокруг начала координат на угол а-радиан, называется синусом числа а, а абсцисса этой точки - косинусом".
Это определение вообще из области математической абстракции, так как вводит отрицательные значения синуса и косинуса. И с пониманием синуса по этому определению ещё больше сложностей.
Есть простой тест на понимание синуса и косинуса. Попросите школьника нарисовать линию косинуса для произвольного треугольника (не прямоугольного). Если он этого сделать не может - он не понимает, что такое синус и косинус.
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Из центра окружности, описанной около остроугольного треугольника, проведены радиусы к вершинам треугольника. углы между радиусами равны 90°, 130°, 140°. найди углы треугольника
Вписанные углы РMN и KNM опираются на равные хорды. Следовательно, дуги, стягиваемые этим хордами, равны. Вписанные углы, опирающиеся на равные дуги (или на равные хорды), равны.
∠РMN=∠KNM
Проведем хорды МР и КN.
В треугольниках MPN и MKN вписанные ∠Р = ∠К (опираются на диаметр).⇒
Прямоугольные ∆ МРN=∆ MKN по острому углу и общей гипотенузе.
Отсюда следует равенство PNM=KMN
Эти углы - накрестлежащие при пересечении РN и MK секущей MN.
Если при пересечении двух прямых секущей накрестлежащие углы равны. эти прямые - параллельны. Доказано.