1) Формула объёма конуса V=S•H:3=πr²H:3
Формула объёма шара
V=4πR³:3
Осевое сечение данного конуса - равносторонний треугольник, т.к. его образующая составляет с плоскостью основания угол 60°.
Выразим радиус r конуса через радиус R шара.
r=2R:tg60°=2R/√3
V(кон)=π(2R/√3)²•2R²3=π8R³/9
V(шара)=4πR³/3
V(кон):V(шар)=[π8R³/9]:[4πR³/3]=(π•8R³•3/9)•4πR³=2/3
———————
2) Формула объёма цилиндра
V=πr²•H
Формула площади осевого сечения цилиндра
S=2r•H
Разделим одну формулу на другую:
(πr²•H):(2r•H)=πr/2⇒
96π:48=πr/2⇒
4π=πr
r=4
Из площади осевого сечения цилиндра:
Н=S:2r=48:8=6
На схематическом рисунке сферы с вписанным цилиндром
АВ- высота цилиндра, ВС - его диаметр,
АС - диаметр сферы.
АС=√(6²+8²)=√100=10
R=10:2=5
S(сф)=4πR8=4π•25=100π см²
Поделитесь своими знаниями, ответьте на вопрос:
Квадрат и прямоугольник площади которых соответственно равны 36см² и 96см², имеют общую сторону, а расстояние между их параллельными сторонами 14 см. найдите угол между плоскостями. с рисунком, !
ABCD - прямоугольник, Sabcd = 96 см²,
ABKM - квадрат, Sabkm = 36 см².
Sabkm = AB² = 36
AB = 6 см
Sabcd = AB · AD, ⇒
AD = Sabcd / AB = 96 / 6 = 16 см
Плоскости квадрата и прямоугольника пересекаются по прямой АВ, АВ - ребро двугранного угла.
МА⊥АВ как стороны квадрата,
DA⊥АВ как стороны прямоугольника, ⇒
∠MAD - линейный угол двугранного угла - искомый.
Соединим вершины М и D.
Так как прямая АВ перпендикулярна двум пересекающимся прямым плоскости MAD, то она перпендикулярна и самой плоскости, а значит и каждой прямой, лежащей в этой плоскости, т.е.
АВ⊥MD.
КМ║АВ и CD║AB, ⇒ KM⊥MD, CD⊥MD, т.е.
MD и есть расстояние между параллельными сторонами квадрата и прямоугольника.
MD = 14 см.
Из треугольника AMD по теореме косинусов:
MD² = AM² + AD² - 2·AM·AD·cosMAD
196 = 36 + 256 - 2 · 6 · 16 · cosMAD
cosMAD = (292 - 196) / 192 = 96/192 = 0,5
∠MAD = 60°