160°
Объяснение:
1) Прямой угол 90° разбит на 2 угла: х и 8х.
Находим х:
х+8х=90
9х = 90
х=10°.
2) Диагонали прямоугольника разбивают его на 2 пары равнобедренных треугольников, общая вершина которых лежит в точке пересечения диагоналей.
3) В равнобедренном треугольнике, у которого угол при вершине тупой, в основании лежат 2 равных между собой острых угла, каждых их которых равен 10°.
4) Т.к. сумма внутренних углов треугольника равна 180°, то тупой угол, образованный пересечением диагоналей, равен:
180 - 10*2 = 180 - 20 = 160°.
ответ: 160°.
Поделитесь своими знаниями, ответьте на вопрос:
Два равнобедренных треугольника имеют общее основание длиной 20 см. угол между плоскостями треугольника 60 градусов, а их площади 60 см^2 и 160 см^2. найти расстояние между вершинами треугольников
Напишите уравнение окружности, проходящей через точки
A (-3; 0) и B (0; 9), если известно, что центр окружности лежит на оси ординат.
Объяснение:
Если центр лежит на оси ординат, то координаты центра О(0 ;у₀).
Тогда уравнение окружности (x – х₀)²+ (y – у₀)² = R² примет вид :
(x – 0)²+ (y – у₀)² = R² или х ²+ (y – у₀)² = R² . Т.к. точки А и В принадлежат окружности, то координаты точек удовлетворяют уравнению окружности
Получили систему.
{ (-3)²+ (0 – у₀)² = R² ,{ 9+ у₀² = R²
|{ 0²+ (9 – у₀)² = R² ,|{ (9 – у₀)² = R², приравняем левые части
9+ у₀²= (9 – у₀)² → 9+ у₀²= 81 –18у₀+ у₀² , 18у₀=72 , у₀=4 .
Найдем R : 9+ 4² = R² , R²=25 , учитывая , что R>0 , получаем R=5.
Координаты центра О(0;4) , R=5 → x ²+ (y –4)² = 5²