sryzhova6392
?>

Два острых угла прямоугольного треугольника относятся как 12 найти больший острый угол​

Геометрия

Ответы

mlf26

Составляем уравнение:

2х+х=90

х=30

2)30•2=60

60°

Пояснение:

берём 90° потому что треугольник прямоугольный и 180°-90°=90°

Ruzalina_Svetlana1435
По уравнениям боковых сторон 3x+y=0 и -x+3y=0 видно, что они проходят  через начало координат - это одна из вершин треугольника: О(0;0).
Основание равнобедренного треугольника перпендикулярно его высоте (она же и биссектриса угла при вершине).
Находим уравнения биссектрис угла при вершине О:
\frac{A_1x+B_1y+C_1}{ \sqrt{A_1^2+B_1^2} } =+- \frac{A_2x+B_2y+C_2}{ \sqrt{A_2^2+B_2^2} }
1) (3х+у)/√10 = (-х+3у)/√10
    3х+у = -х+3у
    4х = 2у
     у = 2х  не подходит (проходит выше сторон треугольника).

2) (3х+у)/√10 = -(-х+3у)/√10
    3х+у = -(-х+3у)
    2х = -4у
     у = (-1/2)х.
    Уравнение перпендикулярной прямой у = 1/(-к)+в
    В нашем случае уравнение основания (назовём его АВ) будет таким:
    у = 1(1/2)х+в = 2х+в.
    Подставим координаты известной точки на основании (5;0):
    0 = 2*5+в  отсюда в = -10.
    Уравнение АВ: у = 2х-10  или 2х-у-10 = 0.
    Координаты вершин А и В находим как как точки пересечения боковых сторон с основанием.
\left \{ {3x+y=0} \atop {2x-y-10=0}} \right.
Сложив уравнения, получаем 5х-10 = 0, отсюда х = 10/5 = 2.
у = -3х = -3*2 = -6. Это точка А(2; -6).
\left \{ {{-x+3y=0} \atop {2x-y-10=0}} \right.
Умножим первое уравнение на 2 и сложим:
5у = 10,  у = 10/5 = 2,  х = 3у = 3*2 = 6.
Это точка В(6; 2).

ответ: вершины треугольника  О(0;0), А(2;-6), В(6;2).
superbalsa
Прямой называется призма, боковое ребро которой  перпендикулярно плоскости основания. Все боковые грани прямой призмы прямоугольники.Основание призмы тоже прямоугольник (дано).
а). Искомая линия пересечения - перпендикуляр dh, опущенный на прямую bd1, так как прямая bd1 и точка d принадлежат плоскости bb1d1b, а через точку можно провести только один перпендикуляр к прямой. Он и будет принадлежать обеим плоскостям, то есть являться линией пересечения двух плоскостей.
б). Прямые ас и b1d1 лежат в параллельных плоскостях, значит расстояние между ними равно расстоянию между этими плоскостями, то есть равно высоте данной нам призмы. Диагональ bd основания призмы (прямоугольника) находится по Пифагору:
bd=√(ab²+ad²)=√(25+11) = 6. Диагональ прямой призмы bd1 равна по Пифагору:
bd1=√(ab²+ad²+dd1²)= √(25+11+144)=√180=6√5.
Итак, мы имеем прямоугольный треугольник bdd1, в котором dh является высотой, опущенной из прямого угла на гипотенузу. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два меньших треугольника, подобных исходному и подобных друг другу. Следовательно, искомый угол <bdh равен углу <dd1b, тангенс которого равен отношению противолежащего катета bd к прилежащему катету dd1, то есть tg<bdh=bd/dd1 =6/12 = 0,5.
ответ:  тангенс искомого угла равен 0,5.

Основание прямой четырехугольной призмы abcda1b1c1d1 прямоугольник abcd, в котором ab=5, ad=11^1/2 (

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Два острых угла прямоугольного треугольника относятся как 12 найти больший острый угол​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

druzhbamagazin2457
Дудина895
vitalis79
Simbireva
Виталий887
markitandl
mar1030
Сергеевич1396
agutty3
Alex-kustov
alicia179
test43
irinaphones8
astahova
tanias