В правильной пирамиде высота падает в центр основания, то есть в центр правильного многоугольника. Правильный четырёхугольник это квадрат, а его центр находится на пересечении диагоналей. Боковые грани правильной пирамиды это равнобедренные треугольники, которые равны. Апофема это высота боковой грани. В квадрате все стороны равны, диагонали равны и делятся точкой пересечения пополам.
Пусть P∈AD и MP⊥AD, тогда MP=17см и AP=PD т.к. в равнобедренном Δ высота является и медианой.
Пусть H∈(ABC) и MH⊥(ABC), тогда AC∩BD=H.
ΔMHP - прямоугольный, найдём неизвестный катет.
см.
ΔAHD - равнобедренный, поэтому PH не только медиана, но и высота.
ΔHPD - прямоугольный, ∠HDP=45° т.к. диагонали квадрата являются и биссектрисами, значит HP=PD=8см - равны как катеты, прямоугольного Δ с острым углом в 45°.
AD=2·PD=2·8см=16см.
Площадь квадрата можно найти через сторону, а площадь равнобедренного треугольника через сторону и высоту опущенную на эту сторону.
S(ABCD) = AD²=16² см².
S(AMD) = MP·AD:2=17·16:2 см².
S(бок. пов.) = 4·S(AMD)=4·17·16:2 см²=2·17·16 см².
S(полн. пов.) = S(ABCD)+S(бок. пов.) = 16²см²+2·17·16 см² = 32·(8+17)см² = 8·4·25см²=800см².
ответ: 800см².
Поделитесь своими знаниями, ответьте на вопрос:
Основою прямокутного паралелепіпеда є квадрат.площа основи паралелепіпеда становить 64см^2, а площа бічної грані - 56см^2.визначити об‘єм паралелепіпеда.
4+3-7=0
0=0
тк равенство верно, то точа А лежит на этой прямой
2) тк прямая паралельна оси Ох (абсцисс), то прямая имеет вид у=к
и именно прямая у=3 будет проходить через точку N
3) уравнение прямой - у=кх+б
у нас имеется 2 точки - О(0;0) и D(3;-2)
подставим координаты в это уравнения и у нс получится система:
0=б
-2=3к+б
б=0 и к=-2\3
наша прямая имеет уравнение у=-2\3х
4) уравнение окружности : (х-х0)^2 + (у-у0)^2 =R^2
центр окружности Р(-2;-1), подставим ее координаты в уравнение
(х+2)^2+(у+1)^2=R^2
теперь осталось найти радиус
найдем длину вектора PQ:
PQ{3;4}, |PQ|=корень из(3^2+4^2)=5
именно длина вектора PQ для нас является длиной радиуса окружности
конечный вид уравнения окружности:
(х+2)^2+(у+1)^2=25
5) Найдем длину вектора АВ
АВ{3;4} (АВ в модуле - длина вектора) |АВ|=корень из(3^2+4^2)= 5
длина между точками А и В = 5