15. треугольник АВС, МН-средняя линия , площадь АМН=21, треугольник АНС , НМ-медиана (АМ=МС), медиана делит треугольник на 2 равновеликих треугольника, площадь АМН=площадь МНС=21, площадь АНС=площадьАМН+площадьМНС=21+21=42, треугольник АВС, АН-медиана (ВН=НС), тогда плошщадь АВН=площадьАНС=42, площадьАВС=площадь АВН+площадьАНС=42+42=84
16. площади подобных многоугольников относятся как периметры в квадрате, 16/49=периметр1 в квадрате/1225, периметр1 в квадрате=16*1225/49=400, периметр1=20
17. треугольник АРД подобен треугольнику ВРС по двум равным углам, уголР-общий, уголА=уголРВС как соответственные, площади подобных треугольников относятся как отношение квадратов подобных сторон, площадь ВРС/площадьАРД=ВС в квадрат/АД в квадрате, площадьВРС/80=9/16, площадьВРС=80*9/16=45, площадьАВСД=площадьАРД-площадьВРС=80-45=35
18, треугольник АВС, АВ=Вс=20, АС=32, проводим высоту ВН=медиане, АН=НС=1/2АС=32/2=16, треугольник АВН прямоугольній, ВН=корень(Ав в квадрате-АН в квадрате)=корень(400-256)=12, tgA=ВН/АН=12/16=3/4=0,75
19. треугольник АВС, уголС=90, ВС=2, АС=4,, АВ=корень(АС в квадрате+ВС в квадрате)=корень(16+4)=2*корень5, cosB=ВС/АВ=2/(2*корень5)=корень5/5
Поделитесь своими знаниями, ответьте на вопрос:
Даны треугольники abc ас=12 ав=а вс=3а а=?
РА=РВ=РС=6 см
1. Рассмотрим Δ АОР - прямоугольный.
АО²+РО²=РА² - (по теореме Пифагора)
АО = √(РА²-РО²) = √(6² - (√13)²) = √(36-13) = √23 (см)
2. АО является радиусом описанной окружности.
R=(a√3) / 3
a= (3R) / √3 = (3√23)/√3 = √69 (см) - это длина стороны основы.
3. Находим периметр основы.
Р=3а
Р=3√69 см
4. Проводим РМ - апофему и находим ее.
Рассмотрим Δ АМР - прямоугольный.
АМ=0,5АВ=0,5√69 см
АМ²+РМ²=РА² - (по теореме Пифагора)
РМ = √(РА²-АМ²) = √(6² - (0,5√69)²) = √(36-17,25) = √18,75 = 2,5√3 (см)
5. Находим площадь боковой поверхности пирамиды.
Р = 1/2 Р₀l
Р = 1/2 · 3√69 · 2,5√3 = 3,75√207 = 3,75·3√23 = 11,25√23 (см²)
ответ. 11,25 √23 см².