Проекция это когда опускаешь перпендикуляр из точки конца отрезка ты проводишь высоту из вершины В к основанию АС и находишь отрезочки на которые делится основание этой высотой а еще нужно заметить что треугольник АВС прямоугольный и можно найти АС АС в квадрате = 20*20+15*15 ас в квадрате=625 Ас =25 вот есть у тебя треугольник там есть подобные треугольники маленький треугольник подобен большому я возьму что точка где будет заканчиваться проекция Н вот получается что треугольник АВН подобен АВС и можно использовать отношение сходственных сторон 20\25=х\15 х это АН потом из 25 вычитаешь полученное и все)
hotnuts
21.10.2022
Условие задачи дано с ошибкой: если в основании прямоугольного параллелепипеда квадрат, то диагональ основания составляет с боковой гранью угол 45°, а не 30°. Кроме того, по этим данным невозможно найти высоту прямоугольного параллелепипеда.
Задача встречается в таком виде: Основанием прямоугольного параллелепипеда служит квадрат. Диагональ параллелепипеда равна 12, она составляет угол 30° с плоскостью боковой грани. Найдите объём прямоугольного параллелепипеда.
DB₁ - диагональ прямоугольного параллелепипеда. Угол между прямой и плоскостью - угол между прямой и ее проекцией на эту плоскость. В₁С₁⊥(DD₁C₁), значит DC₁ - проекция диагонали DB₁ на плоскость (DD₁C₁), а ∠B₁DC₁ = 30°.
ты проводишь высоту из вершины В к основанию АС и находишь отрезочки на которые делится основание этой высотой
а еще нужно заметить что треугольник АВС прямоугольный
и можно найти АС
АС в квадрате = 20*20+15*15
ас в квадрате=625
Ас =25
вот есть у тебя треугольник
там есть подобные треугольники
маленький треугольник подобен большому
я возьму что точка где будет заканчиваться проекция Н
вот получается что треугольник АВН подобен АВС
и можно использовать отношение сходственных сторон 20\25=х\15
х это АН
потом из 25 вычитаешь полученное и все)