Точки А1 и В1 - середины сторон ∆ АСВ. Соединим их. В1А1 – срденяя линия ∆ АСВ и по свойству средней линии В1А1║ АВ.⇒ Четырехугольник АВ1А1В - трапеция, В1В и А1А - ее диагонали. Треугольники, образованные отрезками иагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.( свойство трапеции). Доказательство. Рассмотрим ∆ АВ1А1 и ∆ ВВ1А1. У этих треугольников общее основание и высоты, равные высоте трапеции. Формула площади треугольника S=a•h/2, где а - сторона треугольника, h- высота, проведенная к ней. Если основания и высоты треугольников равны, их площади равны. ∆ АВ1А1= ∆ АВ1О+∆ В1ОА1 ∆ ВВ1А1= ∆ ВОА1+∆ В1ОА1 Два треугольника с равной площадью состоят из частей, одна из которых - одна и та же. Следовательно, площади вторых частей этих треугольников равны. S ∆ АОВ1=S∆ ВОА1, ч.т.д.
dailyan539
11.02.2022
Дополнительное построение: EA||BD, FA||CD, G - середина FB.
AE=BD, AF=CD, EB=FC=AD (как противоположные стороны параллелограммов) AD=3BC, FB=FC-BC=2BC, EF=EB-FB=BC, FG=GB=FB/2=BC
AB⊥CD => AB⊥AF, ∠FAB=90° AG=FB/2=BC (медиана из прямого угла равна половине гипотенузы)
AG=EF=FG=GB=BC=y AE=BD=2x AC=3x AF=CD=a AB=b
△FAB (по теореме Пифагора): a^2 +b^2 =4y^2
------- Медиана через стороны треугольника (теорема Аполлония): Mc= √(2a^2 +2b^2 -c^2)/2 -------
Четырехугольник АВ1А1В - трапеция, В1В и А1А - ее диагонали.
Треугольники, образованные отрезками иагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.( свойство трапеции).
Доказательство.
Рассмотрим ∆ АВ1А1 и ∆ ВВ1А1. У этих треугольников общее основание и высоты, равные высоте трапеции.
Формула площади треугольника S=a•h/2, где а - сторона треугольника, h- высота, проведенная к ней.
Если основания и высоты треугольников равны, их площади равны.
∆ АВ1А1= ∆ АВ1О+∆ В1ОА1
∆ ВВ1А1= ∆ ВОА1+∆ В1ОА1
Два треугольника с равной площадью состоят из частей, одна из которых - одна и та же. Следовательно, площади вторых частей этих треугольников равны.
S ∆ АОВ1=S∆ ВОА1, ч.т.д.