Проведем высоту ЕН в равнобедренном треугольнике EFM. Эта высота является и медианой, то есть МН=НF=10√6. В прямоугольном треугольнике ЕРН <EPH=60° (так как это угол между ЕР и плоскостью МРF), значит <PHE=30°. Тогда РН=2*РЕ=20 (РЕ - против угла 30°). РН - апофема (высота) грани МРЕ. Площадь этой грани равна Smpe=0,5*MF*PH=0,5*20√6*20 = 200√6. Из треугольника ЕРН по Пифагору ЕН=√(PH²-PE²)=10√3. Из треугольника ЕНМ по Пифагору ЕМ=√(ЕH²+НМ²)=√(300+600)=30. Площадь грани ЕРМ=0,5*ЕМ*РЕ=0,5*30*10=150. Площадь боковой поверхности пирамиды Sб=2*150+200√6 =300+200√6=100(3+2√6).
Ignateva737
12.05.2020
Формула: с²=а²+в² 1. с²= 13²+12²= 169+144=313
с=
2. Гипотенуза 8+2=10 см Нужно найти катет, допустим катет "а"
а²=с²-в²=100-64=36 а=6
3. Найдём ещё 1 катет, допустим "в" в²=с²-а²=(25-15)(25+15)=10×40=400 в=
Sabc = a×в:2=20×15:2=300:2=150 см²
4. В треугольнике нет диагоналей, там либо биссектрисы, либо высоты, либо медианы.
5. Диагонали (*) пересечения делятся пополам => 12:2=6 - одна половина диагонали, например ОС. Получаем прямоугольный треугольник найдём катет этого треугольника c=10, a=6, в-? в²= 100-36=64 в=
Отсюда находим вторую диагональ 8+8=16 см Sabcd=d1 × d2 :2= 16×12:2=192:2=96 см²
6. Т. к. у нас есть высота => у нас получается параллелограм (АВСЕ, СЕ-высота) Значит, ВС=АЕ=15 как противоположные стороны в параллелограме Теперь можем найти ЕD=АD-АЕ=36-15=21 Рассмотрим треугольник СЕD - прямоугольный. По теореме Пифагора с²=а²+в² Нам нужно найти СD - большая боковая сторона, гипотенуза прямоугольного треугольника с²= а²+в²= 21²+20²=441+400=841 с=
с=29 см
Единственное, я не писала ответы и не называла стороны, на случай, если у тебя свои названия
Из треугольника ЕРН по Пифагору ЕН=√(PH²-PE²)=10√3.
Из треугольника ЕНМ по Пифагору ЕМ=√(ЕH²+НМ²)=√(300+600)=30.
Площадь грани ЕРМ=0,5*ЕМ*РЕ=0,5*30*10=150.
Площадь боковой поверхности пирамиды Sб=2*150+200√6 =300+200√6=100(3+2√6).