1) В правильной треугольной пирамиде проекция бокового ребра на основание равна 2/3 высоты основания h и равна радиусу R описанной окружности около основания.
h = a*cos 30° = 6*(√3/2) = 3√3 см.
R = (2/3)h = (2/3)*(3√3) = 2√3 см.
Отсюда получаем ответ:
β = arc tg(H/R) = arc tg(4/2√3) = 0,8571 радиан или 49,1066 градуса.
2) В правильной треугольной пирамиде проекция апофемы на основание равна 1/3 высоты основания h и равна радиусу r вписанной окружности в основание.
h = a*cos 30° = 6*(√3/2) = 3√3 см.
r = (1/3)h = (1/3)*(3√3) = √3 см.
Отсюда получаем ответ:
α = arc tg(H/r) = arc tg(4/√3) = 1,16216 радиан или 66,58678 градуса.
3) So = a²√3/4 = 36√3/4 = 9√3 см².
Периметр Р = 3а = 3*6 = 18 см.
Апофема А = √(Н² + r²) = √(36 + 3) = √39 см.
Sбок = (1/2)РА = (1/2)*18*√39 = 9√39 см².
S = So + Sбок = 9√3 + 9√39 = 9(√3 + √39) см².
Поделитесь своими знаниями, ответьте на вопрос:
1. найдите площадь осевого сечения усеченного конуса, если его высота h, образующая l и площадь боковой поверхности s.
Если рассмотреть треугольник со сторонами, равными боковому ребру, высоте и (2/3) высоты основания пирамиды, то угол наклона будет угол между боковым ребром и (2/3) высоты треугольника, лежащего в основании.
По стороне основания найдем высоту основания. Она равна а √3/2=6√3/2=3√3, а 2/3 этой высоты равно 2√3 см, отношение высоты пирамиды к высоте основания пирамиды равно тангенсу угла наклона бокового ребра к плоскости основания, здесь 2/3 высоты осснования является проекцией бокового ребра на плоскость основания.
Итак, тангенс искомого угла равен
4/2√3=2/√3, тогда искомый угол это арктангенс (2/√3)