ответ:
чебышев сумел создать новые направления в разных областях: теории вероятностей, теории приближения функций многочленами, интегральном исчислении, теории чисел и т.д. в теории вероятностей ввел метод моментов; доказал в общей форме закон больших чисел, применив для этого неравенство, названное впоследствии его именем (неравенство бьенеме – чебышева). в теории чисел чебышеву принадлежит ряд работ по распределению простых чисел. в работе 1850 чебышев доказал утверждение, известное как постулат бертрана, согласно которому между числами n и 2n – 2(n > 3) лежит по крайней мере одно простое число. кроме того, чебышев является создателем новых методов в теории чисел. известны работы ученого в области анализа.
Поделитесь своими знаниями, ответьте на вопрос:
Докажите равенство треугольников аdc и abc, изображенных на рисунке, если ad=bc угол dac= углу bca. найдите углы adc и acd, если угол abc =108, угол bac =32
Объяснение:
Из точки Е проведем отрезок ЕК, параллельный АВ.
Противоположные стороны параллелограмма параллельны, тоесть СВ//DE => ЕА//КВ и DE//CK
Так как в четырехугольнике КЕАВ стороны попарно параллельны, следовательно КЕАВ – параллелограмм.
ВЕ – биссектриса угла КВА по условию и диагональ параллелограмма КЕАВ.
Если диагональ параллелограмма является биссектрисой его угла, то этот параллелограмм – ромб.
Следовательно: КЕАВ – ромб
У ромба все стороны равны. Исходя из этого: ЕА=КВ=АВ=8 см.
СD=AB=8 так как противоположные стороны параллелограмма равны.
Р(АВСD)=АВ+ВС+CD+AD=AB+BK+KC+CD+DE+EA=8+8+KC+8+DE+8=32+KC+DE
Так как Р(ABCD)=46 см по условию, то получим уравнение:
32+КС+DE=46
KC+DE=14 см
Так как ЕК//АВ, а АВ//CD, то ЕК//CD;
DE//CK (доказано ранее);
Исходя из этого: CDEK – параллелограмм.
Противоположные стороны параллелограмма равны, тоесть DE=CK.
Тогда 2DE=14 см
DE=7 см
ответ: 7 см