DC=b/2
Объяснение:
Треугольник ADB - равнобедренный, так как у него две стороны DB и AD равны. Следовательно, угол DAB (угол при основании равнобедренного треугольника) равен второму углу при основании DBA. По условию, так как AD - биссектриса, угол DAB = углу DAC и углу DBA (как только что определили).
Теперь рассмотрим большой треугольник АВС.
В нем угол CBA = Альфа, а угол ВАС = 2*Альфа (так как биссектриса делит угол пополам, и каждая половинка угла равна Альфа, как мы определились).
Зная, что сумма углов треугольника равна 180 градусов, составляем уравнение:
Значит, каждый из углов треугольника равны 60 градусов, а это означает, что треугольник равносторонний. У него все стороны равны. То есть сторона АВ=ВС=АС=b или с (сторона АВ = с, АС=b, так как АВ=АС, то и с=b). В дальшейшем будем считать, что у нас одно число b, раз уж они равны.
В равностороннем треугольнике биссектриса является медианой и высотой.
Медиана делит сторону, к которой она проведена, пополам.
Отсюда имеем, что DB=DC.
Так как вся ВС = b, то отрезки DB и DC равны по b/2.
Несмотря на то, что прямоугольный треугольник, сторонами которого являются высота, медиана и отрезок гипотенузы между ними, является Пифагоровым (8, 15,17), и высота делит гипотенузу, длина которой равна 17*2 = 34, на отрезки длиной 17 - 8 = 9 и 17 + 8 = 25 (как и положено, 9*25 = 15^2), сам треугольник не является целочисленным, и его катеты надо просто вычислить по теореме Пифагора.
Меньший катет равен √(9^2 + 15^2) = 3*√34;
Больший катет равен √(25^2 + 15^2) = 5*√34;
Ну да, еще периметр 34 + 8*√34 ;
Поделитесь своими знаниями, ответьте на вопрос:
А) в треугольнике abc: am = bm = mc(рис. 14 вас = 62°, угол bca = 31. найдитеугол abc.б) на рисунке 14: am - вм - мс, угол аbc = 90°, угол mcb = 28°. найдите угол сав.
а) угод ABC= 360-(BAC+BCA)= 360-93=267
б) угод CAB= 360-(ABC+MCB)=360-118=242