Проведем высоту к основанию равнобедренного треугольника. Высота поделит основание на две равные части, т.е. 18/2=9.
Когда мы провели высоту (она же медиана, кстати), у нас образовалось два прямоугольных треугольника. Э ти треугольники будут равны, т.к. гипотенузы уних и катеты равны.
Площадь одного треугольника найдем по теореме Пифагора
41^2=9^2(половина основания большого треугольника)+x^2(х- высота)
х=40.
40 и 9 - катеты тр. S= половина произведения катетов (40*9)/2=180.
Т.к. прямоугольные тр. равны, то площадь большого треугольника равна: 2*180=360.
ответ:360!
Поделитесь своими знаниями, ответьте на вопрос:
Вравнобедренном треугольнике с основанием 8 и боковой стороной 5 проведена высота. найдите длину высоты и площадь этого треугольника.
Грань АА1С1С - квадрат.
АС по т.Пифагора равна 20. В призме все боковые ребра равны. ⇒ ВВ1=СС1=АА1=АС=20.
По условию боковые ребра пирамиды АВ1СВ равны, значит, их проекции равны между собой и равны радиусу окружности, описанной около основания АВС. ⇒
Вершина пирамиды В1 проецируется в центр Н описанной около прямоугольного треугольника окружности, т.е. лежит в середине гипотенузы.
∆ АВС прямоугольный, R=АС/2=10.
АН=СН=ВН=10.
Высота призмы совпадает с высотой В1Н пирамиды.
По т.Пифагора
В1Н=√(BB1²-BH²)=√(20²-10²)=√300=10√3
Формула объёма призмы
V=S•h где S - площадь основания, h - высота призмы.
S-12•16:2=96 (ед. площади)
V=96•10√3=960√3 ед. объёма.