zoyalexa495
?>

Найдите сторону квадрата, если его площадь равна площади прямоугольника со сторонами 7 и 28

Геометрия

Ответы

juliaWinter
Внешний угол при вершине треугольника равен сумме внутренних углов треугольника, не смежных с ним. рассмотрим треугольник abc. угол свн - внешний угол при вершине, противоположной основанию. вм- биссектриса этого угла. она делит угол на два равных угла 1 и 2. так как внешний угол при  в   равен сумме внутренних углов а и с, а треугольник авс равнобедренный и углы при его основании равны между собой, все выделенные углы также равны между собой. углы под номером 1 -равные соответственные при прямых ас и вми секущей авуглы под   номером 2 - равные накрестлежащие при прямых ас и вми секущей всесли при пересечении двух прямых третьей внутренние накрестлежащие углы равны, то прямые параллельны.
alfaduk24908
трапеция АВСД, МН-отрезок, ВС=1, АД=6, МН=4, продлеваем боковые стороны до пересечения их в точке О, треугольник АОС подобен треуг.МОН и ВОС по двум равным соответственным углам при основании треугольников, в подобных треугольниках площади относятся как квадраты соответствующих сторон, ВС²/АД²=S треуг.ВОС /S треуг.АОД, 1/36=S ΔВОС/S ΔАОД, S ΔВОС= SΔАОД/36, МН²/АД²=S ΔМОН/S ΔАОД, 16/36=S ΔМОН/S ΔАОД, S ΔМОН=16S ΔАОД/36, S трап.МВСН=S ΔМОН-S ΔВОС=16S ΔАОД/36 - S ΔАОД/36=15S ΔАОД/36, S трапец.АМНД=S ΔАОД - S ΔМОН=S ΔАОД - 15S ΔАОД/36=21S ΔАОД/36, трап.МВСН / трапец.АМНД = (15S ΔАОД/36) / (21S ΔАОД/36)=15/21=5/7

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите сторону квадрата, если его площадь равна площади прямоугольника со сторонами 7 и 28
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

petrowich076813
vik-2202
infosmolenskay
Tamara
avtalux527
s-food
afilippov3321
anna241273
Mariya694
Lavka2017
dashakhmeleva6
Климова1317
tatakypzova
Sergei1198
avolodyaev