Определение. "Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором". Соединим начала векторов AD и CD в точке С.
Тогда углом между этими векторами будет угол, смежный с внутренним углом С (тупым углом равным 120° - дано, а в равнобокой трапеции углы при основании равны) трапеции ABCD.
Так как сумма смежных углов равна 180°, то искомый угол равен
180° - 120° = 60°.
seletan1
31.01.2020
Дано:
∆ ABC,
AC=BC,
CF — биссектриса.
Доказать: CF — медиана и высота.
Доказательство:
Рассмотрим треугольники ACF и BCF. 1) AC=BC (по условию (как боковые стороны равнобедренного треугольника)) 2) ∠ACF=∠BCF (так как CF — биссектриса по условию). 3) сторона CF — общая. Значит, ∆ ACF=∆ BCF (по двум сторонам и углу между ними). Из равенства треугольников следует равенство соответствующих сторон и углов. Таким образом, AF=BF, следовательно, CF — медиана. ∠AFC=∠BFC. А так как эти углы — смежные, значит, они прямые: ∠AFC=∠BFC=90º. Значит, CF — высота. Что и требовалось доказать.
(CD^AD) = 60°.
Объяснение:
Определение. "Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором". Соединим начала векторов AD и CD в точке С.
Тогда углом между этими векторами будет угол, смежный с внутренним углом С (тупым углом равным 120° - дано, а в равнобокой трапеции углы при основании равны) трапеции ABCD.
Так как сумма смежных углов равна 180°, то искомый угол равен
180° - 120° = 60°.