picsell
?>

с задаче по геометрии 7 класс(ниже фото)

Геометрия

Ответы

kun1969
Если есть проблемы с отображением, смотрите снимок ответа, который приложен к нему.
====
Смотрите рисунок, приложенный к ответу.
Рассмотрим \triangle ABC. Из условия ясно, что он — прямоугольный (так как \angle C = 90^{\circ}). AB = 6 cm — гипотенуза, AC — искомый катет, tg \angle A = 2\sqrt{2}
Тангенс острого угла прямоугольного треугольника есть отношение противолежащего катета к прилежащему катету. То есть: tg \angle A = \frac{BC}{AC}
Отсюда: AC = \frac{BC}{tg \angle A}
Как видим, оба катета неизвестны. Но есть выход — теорема Пифагора. Покажем теорему Пифагора для данного треугольника:
AB^2 = AC^2 + BC^2
Как мы выяснили чуть выше AC = \frac{BC}{tg \angle A}.
Заменяем и получаем:
AB^2 = (\frac{BC}{tg \angle A})^2 + BC^2
Немного поколдуем:
AB^2 = \frac{BC^2}{tg^2 \angle A} + BC^2 \\ 
AB^2 = \frac{BC^2 + BC^2 \cdot tg^2 \angle A}{tg^2 \angle A} \\ 
AB^2 = \frac{BC^2( 1 + tg^2 \angle A)}{tg^2 \angle A} \\
Отсюда найдем BC:
AB^2 = \frac{BC^2( 1 + tg^2 \angle A)}{tg^2 \angle A} \\ 
BC^2 = \frac{AB^2 \cdot tg^2 \angle A}{1+tg^2 \angle A} \\ 
BC = \sqrt{\frac{AB^2 \cdot tg^2 \angle A}{1+tg^2 \angle A}}
Теперь напомню зачем нам нужно было BC:
AC = \frac{BC}{tg \angle A}
Подставляем вместо BC новую подстановку:
AC = \frac{\sqrt{\frac{AB^2 \cdot tg^2 \angle A}{1+tg^2 \angle A}}}{tg \angle A}
Отлично. В формуле для нахождения ответа не осталось ни одной неизвестной. Подставляем то, что есть в формуле. Из условия:
tg \angle A = 2\sqrt{2}, AB = 6 cm
Найдем, наконец, AC:
AC = \frac{\sqrt{\frac{AB^2 \cdot tg^2 \angle A}{1+tg^2 \angle A}}}{tg \angle A} = \frac{\sqrt{\frac{(6 cm)^2 \cdot (2\sqrt{2})^2}{1+(2\sqrt{2})^2}}}{2\sqrt{2}} = \frac{\sqrt{\frac{36 cm^2 \cdot 8}{1+8}}}{2\sqrt{2}} =
= \frac{\sqrt{32 cm^2}}{2\sqrt{2}} = \sqrt{\frac{32}{2} cm^2} \cdot \frac{1}{2} = \sqrt{16 cm^2} \cdot \frac{1}{2} = 4 cm \cdot \frac{1}{2} = 2 cm
Это ответ.

Втреугольнике abc угол c равен 90° ab=6, tga=2 на корень из 2. найдите ac
Втреугольнике abc угол c равен 90° ab=6, tga=2 на корень из 2. найдите ac
olgakovalsky6
Пусть трапеция АБСД, О-точка пересечения диагоналей, К- точка пересечения продолжений боковых сторон. Проведем через точку О отрезок  МН параллельный большему основанию АД.
Достаточно доказать , что  ОМ=ОН, тогда КО -луч на котором лежит медиана треугольника КАД к основанию АД. (Медиана,как известно, - геометрическое место точек , которые делят пополам отрезки заключенные между сторонами КА и КД  и параллельные АД).
Докажем , что ОМ=ОН. Рассмотрим Треугольники БАД и БМО.
Они , очевидно подобны и коэффициент подобия равен  альфа =отношению высот этих тпеугольников.
Т.е МО=альфа*АД. Но тоже самое можно написать и для треугольников
САД и СОН. Получим ОН=альфа * АД
Значит ОМ=ОН, что и доказывает утверждение.

Поясняю, что такое  альфа :  альфа -коэффициент подобия. Здесь: отношение высоты треугольника  БМО к высоте треугольника  БАД. Понятно, что у треугольников СОН и САД коэффициент подобия такой же, так как высоты у них такие же.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

с задаче по геометрии 7 класс(ниже фото)
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Viktorovich
vladimir686
brand
kulagin777
nord0764
Tatyana1374
rkorneev19061
Shpunt-86
SVETLANAluiza1534
ekaterinasamoylova4705
MArat
борисовна Елена78
ikosheleva215
iraira761
nataljatchetvertnova