РК - средняя линия треугольника АВС, значит точки Р(2;3) и К(-1;2) - середины отрезков АС и ВС соответственно.
Координаты точек А и В найдем из того, что координаты середины отрезка равны полусумме соответствующих координат начала и конца отрезка. Тогда Xa=2*Xp-Xc = 2*(4-0) = 4, Ya=2*Yp-Yc = 2*(3-0) = 6. Xb=2*Xk-Xc = 2*(-1-0) = -2, Yb=2*Yk-Yc = 2*(2-0) = 4.
Итак, мы имеем точки А(4;6) и В(-2;4).
Эти точки принадлежат прямой Ax+By+c=0.
Подставим в уравнение координаты точек А и В и получим систему двух уравнений: 4А+6В=-С (1) и -2А+4В=-С (2). Решим эту систему, выразив А и В через С. Умножим (2) на 2 и сложим (1) и (2):
14В = -3С => В=-(3/14)*С. Подставив это значение в (1), получим А=(1/14)*С. Теперь подставим полученные значения в общее уравнение прямой:
(С/14)*X+(-3C/14)*Y+C=0 и сократим на "С":
(1/14)X -(3/14)Y +1 =0 Или Х-3Y+14=0. Это и есть искомое уравнение прямой, содержащей отрезок АВ.
ответ: уравнение прямой, содержащей отрезок АВ : Х-3Y+14=0.
Проверка: подставим координаты точки А(4;6) в уравнение. Получим 4-18+14=0 => 0=0. И для точки В(-2;4): -2-12+14=0 => 0=0. Точки А и В принадлежат прямой АВ, уравнение найдено верно.
Поделитесь своими знаниями, ответьте на вопрос:
минут осталось, Известно, что ΔVBC∼ΔRTG и коэффициент подобия k= 1/4. Периметр треугольника VBC равен 13 см, а площадь равна 8 см2. 1. Чему равен периметр треугольника RTG? 2. Чему равна площадь треугольника RTG? 1. P(RTG)= cм 2. S(RTG)= см2
Объяснение:
1. Отношение линейных размеров подобных треугольников равны коэффициенту подобия. к=1/4 ⇒ Р=Р₁*к=13/4=3,25 см.
2. Отношение площадей подобных треугольников равно квадрату коэффициента подобия. к²=1/16 ⇒ S=S₁*k=8/16=0.5 см².