Объяснение:
АВСД - равнобокая трапеция, АВ=СД, ВС=6 см, ∠АВС=120° , ∠САД=30°. Найти АС.
Так как ∠АВС=120°, то ∠ВАД=180°-120°=60° ,
∠САД=30° ⇒ ∠ВАС=∠ВАД-∠САД=60°-30°=30° .
Значит диагональ АС - биссектриса ∠А .
∠АСВ=∠САД=30° как внутренние накрест лежащие при АД || ВC и секущей АС ⇒ ΔАВС - равнобедренный , т.к. ∠ВАС=∠АСВ .
Значит, АВ=АС=6 см .
Опустим перпендикуляры на основание АД из вершин В и С: ВН⊥АС , СМ⊥АД , получим прямоугольник ВСМН и два треугольника АВН и СМД .
Рассмотрим ΔАВН: ∠ВНА=90°, ∠ВАН=∠ВАД=60° , АВ=6 см ⇒
∠АВН=90°-80°=30°
Против угла в 30° лежит катет, равный половине гипотенузы ⇒ АН=6:2=3 см.
Так как ΔАВН=ΔСМД (по гипотенузе АВ=СД и острому углу ∠ВАД=∠АДС), то МД=АН=3 см.
НМ=ВС=6 см как противоположные стороны прямоугольника ВСМН.
АД=АН+НМ+МД=3+6+3=12 см.
Поделитесь своими знаниями, ответьте на вопрос:
Основание пирамиды – прямоугольник со сторонами 6 см и 15 см. Высота пирамиды, равная 4 см, проходит через точку пересечения диагоналей основания. Найти площадь боковой поверхности.
1.
Обозначим радиус меньшей окружности буквой r, а большей - R.
По условиям задачи r/R=2/7.
Ширина полосы будет равна R-r и по условиям равна 24 (см), значит: R-r=24 (см), то есть R=r+24 (см).
С учетом полученного результата имеем:
r/r+24=2/7,
7r=2*(r+24),
7r=2r+48,
5r=48,
r=9,6 (см).
Так как R=r+24, то R=9,6+24=33,6(см).
Таким образом диаметр одной окружности будет равен D=2R=33,6*2=67,2(cм), а диаметр второй окружности будет равен
d=2r=9,6*2=19,2 (см).
2.
Расстояние между центрами окружностей - отрезок ОА делится точкой ка в отношении 2:3. Значит, отрезок ОА разделен на 2+3=5 равных частей. Причем ОК содержит 2 части, а КА - 3 части.
10 см : 5 = 2 см - длина каждой из равны частей.
Тогда ОК=2*2 = 4 см. Диаметр меньшей окружности равен 2*4=8 см.
АК = 3*2 = 6 см. Диаметр большей окружности равен 2*6 = 12 см.
Наверное вот так ...