Даны точки A(3;9) B(8;4) C(-1;7).
1) составить уравнение окружности, проходящей через эти точки, определить координаты центра N и величину R радиуса окружности.
Координаты середин сторон треугольника (основания медиан).
х у
А₁ 3,5 5,5
х у
В₁ 1 8
х у
С₁ 5,5 6,5
Составим уравнения серединных перпендикуляров для сторон АВ и ВС, которые, как известно, проходят через основания медиан A1,B1.
и центр описанной окружности O2:
для стороны AB имеем
C1O2: x−xC1yB−yA=y−yC1xA−xB ⇔ x−5.54−9=y−6.53−8 ⇔ x−5.5−5=y−6.5−5 ⇔ x−y+1=0;
для стороны AC имеем
B1O2: x−xB1yC−yA=y−yB1xA−xC ⇔ x−17−9=y−83−(−1) ⇔ x−1−2=y−84 ⇔ 2x+y−10=0.
Теперь находим координаты центра описанной окружности как точки пересечения срединных перпендикуляров.
x−y+1=0
2x+y−10=0 сложение
3х - 9 = 0. Отсюда х = 9/3 = 3. Значение по оси Оу находим постановкой значения х = 3 в уравнение перпендикуляра. у = х + 1 = 3 + 1 = 4.
Координаты центра N(3; 4).
Находим радиус R = √((3 - 3)² + (4 - 9)²) = √(0 + 25) = 5.
Уравнение окружности: (x − 3)² + (y − 4)² = 5².
2) Написать уравнение эллипса, проходящего через точки B и C, найти полуоси, фокусы, эксцентриситет.
Примем центр эллипса в начале координат (иначе нет решения без дополнительных данных).
(х²/а²) + (у²/b²) = 1. Подставим заданные координаты точек В и С.
(64/а²) + (16/b²) = 1.
(1/а²) + (49/b²) = 1. Замена: (1/а²) = u, (1/b²) = v. Система:
64u + 16v = 1 64u + 16v = 1
1u + 49v = 1 Умножим = 64 64u + 3136v = 64 вычтем 2 - 1
3120v = 63
v = 63/3120 = 21/1040 ≈ 0,020192308
Находим параметр b = √(1/v) = 7,037316.
u = 1 - 49v = 0,010577.
Находим параметр a = √(1/u) = 9,72345.
Уравнение эллипса (х²/9,72345²) + (у²/7,037316²) = 1.
Параметр с = √(a² - b²) = 6,709817.
Эксцентриситет е = с/а = 6,709817/9,72345 = 0,690066.
3) точки и кривые в системе координат в приложении.
Поделитесь своими знаниями, ответьте на вопрос:
А) Бісектриса гострого кута паралелограма ділить протилежну сторону У відношенні 2:3, беручи від вершини тупого кута. Периметр паралелограма дорівнюе 28 см Визначте його сторони. б)Бісектриси кутів A і D паралелограма перетинаються у точці, яка лежить на строні ВС. Визначте сторони паралелограма, якщо його периметр дорівнює 24 см.
Внешний угол B треугольника равен 180° - ∠ B
Биссектриса ВК делит этот угол пополам ( отмечены на рис. синими дугами)
∠КВА = (180° - ∠B)/2= 90°- (∠B)/2
∠ КВС = ∠ КВА + ∠АВС= 90° - (∠B)/2 +∠ B= 90° + (∠ B)/2
Биссектриса КС делит угол С пополам.
∠ КСВ = ∠ (С/2)
Сумма углов треугольника КВС равна 180°
∠ ВКС = 180° - ∠КВС - ∠КСВ= 180° - 90° - (∠ B)/2 - (∠C/2)= 90° -(∠ B+∠C)/2=
= (180° - ∠ B - ∠C)/2 = (∠A)/2
Задача 2
Стороны параллелограмма относятся как 3:4,а его периметр равен 28 см.
Найдите стороны параллелограмма
Пусть одна сторона параллелограмма 3х, другая 4х, тогда периметр равен 3х+3х+4х+4х=14х
А по условию задачи 28
Составляем уравнение
14х=28
х=2
Одна сторона 3х= 3·2= 6 см , другая сторона 4х= 4·2= 8 см
ответ. 6 см и 8 см