Пусть трапеция ABCD : AD || BC ; AD>BC ; AD = 14см ; EF - средняя линия трапеции, E∈ [AB] , F∈ [CD] ; M и N - точки пересечении средней линии EF с диагоналями AC и BD соответственно . a) EM =NF =3 см или b) MN =3 см .
ЕF - ?
обозн. AD =a ,BC =b. EF =(a+b)/2 .
EM = NF =BC/2 =b/2 . Действительно EM и NF средние линии в треугольниках ABC и BCD соответственно(средняя линия треугольника соединяющая середины двух данных сторон, параллельна третьей стороне и равна ее половине ). Аналогично из ΔABD : EN = AD/2 =a/2 * * * или из ΔACD : MF = AD/2=a/2 * * * MN =EN - EM = a/2 -b/2 =(a-b)/2 .
а) b = 2*EM =2*3 см =6 см ; EF =(a+b)/2 =(14 см+6 см)/2 =10 см . b) MN =3 см. MN =(a-b)/2 ⇒b =a -2MN ; EF =(a+b)/2 =(a +a-2MN)/2 = a -MN =14 см -3 см = 11 см.
ответ : 10 см или 11 см.
Дементьева-Артем1315
28.04.2020
Дано: AB =36 см ;BC =30 см ; AC =20 см ; ∠ABD =∠CBD=(1/2)*∠ABC.
AD - ? DC -?
AD/DC =AB/BC (теорема о биссектрисе). AD/DC =36/30 ; AD/DC =6/5 ;обозначаем AD=6k ; DC=5k ⇒AC =AD+DC =(6+5)*k=11k ; 20 =11k⇒k =20/11. AD=6k =6*20/11=120/11 ; DC=5k=5*20/11 100/11. * * * сразу отрезок AC =20 см разделить пропорц на 6 : 5 * * * AD =6*( AC/(6+5) ) =6*( 20/11) =120/11 см. ( 10 10/11 см) DC =5*( AC/(6+5) ) =5*( 20/11) =100/11 см. ( 9 1/11 см)
E∈ [AB] , F∈ [CD] ; M и N - точки пересечении средней линии EF с диагоналями AC и BD соответственно .
a) EM =NF =3 см или
b) MN =3 см .
ЕF - ?
обозн. AD =a ,BC =b.
EF =(a+b)/2 .
EM = NF =BC/2 =b/2 . Действительно EM и NF средние линии в треугольниках
ABC и BCD соответственно(средняя линия треугольника соединяющая середины двух данных сторон, параллельна третьей стороне и равна ее половине ).
Аналогично из ΔABD : EN = AD/2 =a/2 * * * или из ΔACD : MF = AD/2=a/2 * * *
MN =EN - EM = a/2 -b/2 =(a-b)/2 .
а) b = 2*EM =2*3 см =6 см ;
EF =(a+b)/2 =(14 см+6 см)/2 =10 см .
b) MN =3 см.
MN =(a-b)/2 ⇒b =a -2MN ;
EF =(a+b)/2 =(a +a-2MN)/2 = a -MN =14 см -3 см = 11 см.
ответ : 10 см или 11 см.