3 и 4,я сам помню такое решал
S1 ≈ 19,8 cм².
S2 ≈ 3,9 cм².
Объяснение:
По теореме косинусов в треугольнике АВС:
АВ² = ВС² + АС² - 2·ВС·АС·Сos30 =>
25 = 64 + AC² - (8√3)·AC =>
Решаем квадратное уравнение AC² - (8√3)·AC +39 = 0 и =>
AC1 = 4√3+3 ≈ 9,9 см.
АС2 = 4√3-3 ≈ 3,9 см.
По теореме синусов в треугольнике АВС:
5/Sin30 = 2R => R = 5·2/2 = 5 см.
R = a·b·c/(4·S) =>
S1 = a·b·c/(4·R) ≈ (5·8·9,9)/20 = 19,8 cм².
S2 = a·b·c/(4·R) ≈ (5·8·3,9)/20 = 7,8 cм²
P.S. Для проверки на рисунке выполнено точное построение, доказывающее, что задача имеет два решения.
ответ:периметр равен 28
Объяснение:
Смотри, АД=6см,т.к.АЕ=ЕД. Значит,АД=ВС=6см(по свойству параллелограмма)
Теперь проведём через точку О прямую НZ,параллельную АД.
У тебя получится параллелограмм АНЕО,где ЕО=АН=4см(опять же свойство параллелограмма)
Теперь посмотри на отрезок ЕО и продли его до ВС. Ты нарисовал/а среднюю линию параллелограмма. Из этого следует,что вся линия будет равна 8 см. Запомни,что в точке пересечения диагоналей параллелограмма его средние линии делятся пополам(нам учительница по геоме рассказывала). Из этого выходит,что АН=НВ=4, а вся сторона параллелограмма будет равна 8.
Найдём периметр параллелограмма:
6см+6см+8см+8см=28см.
Поделитесь своими знаниями, ответьте на вопрос:
Отметьте верные утверждения:все углы треугольника имеют равные величины, если две его стороны равны;в тупоугольном треугольнике все углы -- тупые;все углы равностороннего треугольника равны.периметр треугольника равен сумме длин его сторон;
Объяснение:
верные утверждения:
- все углы равностороннего треугольника равны;
- периметр треугольника равен сумме длин его сторон