само решение можно Плоскости квадрата ABCD и треугольника BEC перпендикулярны. Найдите угол между прямой DE и плоскостью ABC, ЕСЛИ AB=4 , BЕ=CE=8ответ 60градусов)
Королевский пингвин, житель Антарктиды. Похож на императорского пингвина, но немного мельче его размерами и ярче окраской. Длина тела королевского пингвина составляет от 91 см до 1 м. Взрослые птицы имеют серую спину, по бокам чёрной головы и на груди крупные яркие оранжевые пятна. Брюхо белое. Птенцы бурого цвета. Живут королевские пингвины большими шумными колониями, насчитывающими несколько десятков тысяч пар. Колонии располагаются на больших, покрытых редкой растительностью равнинах. Социальной иерархии в них как таковой нет, но за места в центре колонии птицы конкурируют.
pryvalovo48
21.09.2021
а) Допустим AK < BK (точка K ближе к вершине A) . Обозначаем сторону основания правильной пирамиды AB=BC =CD =DA =a ; Пусть выполняется S(ABCD) =S(KPM) ⇔ a² =KM*PO/2 ⇔a² =KM*(1,5a)/2⇒KM= 4a/3 . AB= a< 4a/3 < a√2 =AC ,.т.е KM не ⊥ AD и KM не совпадает с диагоналями основания . б) Через центр основания O проведем EF ⊥ AD (тоже самое EF ⊥ CD), где E ∈ [AD] , F ∈ [BC] . || K∈[AE] || ΔOEK = ΔOFM по второму признаку равенства треугольников (OE=OF=AB/2 ;∠OEK =∠OFM=90° и ∠KOE =∠MOF-вертикальные углы) . MF=KE . --- Sпол(PABMK) = S(ABMK) +S₁бок . S(ABMK) =(AK +BM)/2 *AB ; AK +BM =(a/2 -KE) +(a/2 +MF)=a. ⇒S(ABMK) =(AK +BM)/2 *AB=a/2 *a =a²/2. S₁бок =S(APK) +S(BPM)+S(APB) +S(KPM) =AK*h/2+BM*h/2+a*h/2+a²= =(AK+BM)*h/2 +.a*h/2 +a² =a*h/2+a*h/2+a² =a*h+a² . Sпол(PABMK)=a²/2+a*h+a²=3a²/2+a*h = (3a+2a*h)/2, где h_длина апофема . ΔEPF h =EP=√((a/2)² +PO²) =√(a²/4 +9a²/4) =(a√10)/2 . --- Sпол(PABCD) = S(ABMK) +S₂бок =a²+4*a*h/2 =a²+2*a*h ; Sпол(PABMK)/ Sпол(PABCD) =(3a²+2a*h )/2 : (a²+2*a*h) = =a²(3+√10)/2 : a² (1+√10) =(3+√10) / 2(1+√10).
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
само решение можно Плоскости квадрата ABCD и треугольника BEC перпендикулярны. Найдите угол между прямой DE и плоскостью ABC, ЕСЛИ AB=4 , BЕ=CE=8ответ 60градусов)