АВС - равнобедренный тр-ник, АВ=ВС=40 см, ВМ=4√91 см, АР и СК - биссектрисы. Найти КР. Тр-ки АРС и АКС равны, так как ∠АСК=∠САР, ∠КАС=∠РСА, сторона АС - общая, значит АК= РС, значит КР║АС, значит треугольники АВС и КВР подобны. В прямоугольном тр-ке АВМ АМ²=АВ²-ВМ²=40²-(4√91)²=144, АМ=12 см, АС=2АМ=24 см. Коэффициент подобия тр-ков АВС и КВР равен: k=АВ/КВ. По теореме биссектрис в тр-ке АВС с биссектрисой СК: ВС/АС=КВ/АК ⇒ КВ=ВС·АК/АС. АК=АВ-КВ, значит КВ=ВС(АВ-КВ)/АС. КВ=40(40-КВ)/24, 24КВ=1600-40КВ, 64КВ=1600, КВ=25 см, Подставим это значение в формулу коэффициента подобия: k=АВ/КВ=40/25=1.6 Исходя из подобия тр-ков АВС и КВР КР=АС/k=24/1.6=15 см - это ответ.
karnakova-a
04.09.2022
AK=3AN, KB:BN=2:1. Пусть NB=х, тогда сторона квадрата равна 3х. а) ∠NBM=∠BML так как NK║ML и МВ - секущая. В тр-ке MNB tgB=MN/NB=3x/3=3. В тр-ке AKN tgN=AK/AN=3AN/AN=3. При параллельных NK и ML ∠ANK=∠BML, значит BM║AN. Доказано.
б) АР пересекает сторону KN в точке Н. В тр-ках AKN и KOH на сторону KN опустим высоты АС и ОТ соответственно. Пусть AN=y, AK=3y. В прямоугольном тр-ке АKN AN²+AK²=KN², y²+9y²=9x², y=3x/√10. Высота АС=AN·AK/KN=(3x/√10)·(9x/√10)/(3x)=9x/10. В тр-ке ACN NC=AC/tgN=3x/10. CT=NT-NC=(3x/2)-(3x/10)=6x/5. Треугольники АСН и ОТН подобны (∠АНС=∠ОНТ и оба прямоугольные). Коэффициент подобия тр-ков АСН и ОТН: k=АС/ОТ=(9х/10):(3х/2)=3/5. СН/НТ=3/5. Пусть СН=3z, НТ=5z. СТ=CH+HT=3z+5z=8z, 8z=6x/5, z=3x/20. СН=9х/20, НТ=3х/4. NH=NC+CH=(3x/10)+(9x/20)=3x/4. КН=КТ+НТ=(3х/2)+(3х/4)=9х/4. NH:KH=(3х/4):(9х/4)=1:3. Треугольники КОН и МОР равны так как ∠НОК=∠РОМ (как вертикальные), ∠ОКН=∠ОМР (KN║ML и КМ - секущая), МО=ОК. KN=ML, КН=МР, значит LP:PM=NH:KH=1:3 - это ответ.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Докажи, что четырёхугольник ABCD является прямоугольником, найди его площадь, если A(14;2), B(20;5), C(17;11) и D(11;8 SABCD= .
Тр-ки АРС и АКС равны, так как ∠АСК=∠САР, ∠КАС=∠РСА, сторона АС - общая, значит АК= РС, значит КР║АС, значит треугольники АВС и КВР подобны.
В прямоугольном тр-ке АВМ АМ²=АВ²-ВМ²=40²-(4√91)²=144,
АМ=12 см, АС=2АМ=24 см.
Коэффициент подобия тр-ков АВС и КВР равен: k=АВ/КВ.
По теореме биссектрис в тр-ке АВС с биссектрисой СК: ВС/АС=КВ/АК ⇒ КВ=ВС·АК/АС.
АК=АВ-КВ, значит КВ=ВС(АВ-КВ)/АС.
КВ=40(40-КВ)/24,
24КВ=1600-40КВ,
64КВ=1600,
КВ=25 см, Подставим это значение в формулу коэффициента подобия: k=АВ/КВ=40/25=1.6
Исходя из подобия тр-ков АВС и КВР КР=АС/k=24/1.6=15 см - это ответ.