1) находим высоту пирамиды 6*sin60=6*sqrt(3)/2=3*sqrt(3)
Находим площадь основания
S=3R^2sqrt(3)/4
R=6*cos60=3
S=3*9sqrt(3)/4=27sqrt(3)/4
V=1/3hS=27*sqrt(3)*3sqrt(3)/3*4=81/4=20,25
2) Пусть ВС=2а, угол АВС=30 градусам. Тогда 2a/AB=cos30 Отсюда находим АВ=4а/sqrt(3), тогда радиус окружности R=2a/sqrt(3) Заодно находим АС=2a/sqrt(3) Перейдем к нахождению высоты. Искомая грань SCB Проведем ОЕ перпендикулярно ВС (одновременно ОЕ параллельна АС и является средней линией и потому равна половине АС, ОЕ=a/sqrt(3)). По теореме о трех перпендику лярах SE тоже будет перпендикулярна ВС и потому линейный угол двугранного угла равен SEO=45/ Тогда SO=OE Высота найдена.Далее находим объем конуса по стандартной формуле.
1. Признак: "Если в четырехугольнике две противоположные стороны равны и параллельны, то этот четырехугольник — параллелограмм".
Стороны АВ=СD (дано). Углы ВАС и АСD равны (дано). Это накрест лежащие углы при прямых АВ и CD и секущей АС. Следовательно, эти прямые параллельны (признак). АВСD - параллелограмм по приведенному выше признаку. Что и требовалось доказать.
2. Треугольники ADB и DCB равны по двум углам (<1=<4 и <2=<3 - дано) и стороне между ними - DB - общая. В равных треугольниках против равных углов лежат равные стороны.
AD=CB, DC=AB. ABCD - параллелограмм по признаку: "Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм".
Что и требовалось доказать.
Поделитесь своими знаниями, ответьте на вопрос:
Вравнобедренном треугольнике ABC проведена высота BD к основанию АС.Длина высоты — 5, 8 см, длина боковой стороны — 11, 6 см.Определи углы этого треугольника. угол BAC =угол BCA =угол ABC =
ответ:ВАС=30
ВСА=30
АВС=120
Объяснение: