На грани АВD расположены две точки искомого сечения - т.А и т.М. Соединив их, получим линию пересечения грани и плоскости сечения. Так как плоскость сечения должна быть параллельна прямой ВС, то линия пересечения плоскости сечения и плоскости грани BDC будут параллельны. Определение: Прямая и плоскость называются параллельными, если они не имеют общих точек.
По теореме:. Если прямая (ВС), не лежащая в данной плоскости (сечения), параллельна какой-нибудь прямой (МК), лежащей в этой плоскости, то она параллельна самой плоскости. Проведем МК║ВС и получим линию пересечения плоскостей грани и сечения.
На грани АDC теперь есть вторая точка, принадлежащая линии пересечения плоскости сечения и грани. Соединим их. АМК - искомое сечение.
Devaunka40
01.03.2023
1. 1) у тебя дан равнобедренный треугольник, так как обе стороны равны. 2) высота делит его на два прямоугольных треугольника. а ещё она делит основу на пополам // два равных отрезка. 3) берёшь любой из этой пары и находишь неизвестный катет по небезизвестной теореме пифагора: квадрат гипотенузы равняется суме квадратов катетов. 4)отсюда находишь катет этот алгоритм пригодится, если нужно найти высоту проведённую к основе. а в остальном не знаю 2. можно поступить хитростью: найди периметр и площадь основного, а затем умнож их на 1/4. так ты найдёшь параметры треугольника, подобного данному. (я не уверен, что так можно, но попробуй). предлагаю другой способ, если что: попробуй найти 1/4 каждой стороны, а затем найти площадь и периметр треугольника с новонайденными сторонами, таким образом найдёшь вышеупомянутые параметры подобного треугольника,т.е. тоже самое
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Дано: Δ ABC; AB=16; AC=15 и медиана AM=15 найти BC=? ∡CAB=?
Так как плоскость сечения должна быть параллельна прямой ВС, то линия пересечения плоскости сечения и плоскости грани BDC будут параллельны. Определение: Прямая и плоскость называются параллельными, если они не имеют общих точек.
По теореме:. Если прямая (ВС), не лежащая в данной плоскости (сечения), параллельна какой-нибудь прямой (МК), лежащей в этой плоскости, то она параллельна самой плоскости. Проведем МК║ВС и получим линию пересечения плоскостей грани и сечения.
На грани АDC теперь есть вторая точка, принадлежащая линии пересечения плоскости сечения и грани. Соединим их.АМК - искомое сечение.