В пирамиде ЅАВС грань АЅС перпендикулярна основанию АВС. Грани АЅВ и СЅВ наклонены под равным углом к основанию, АВ=СВ (дано), ⇒ грани АЅВ и СЅВ равны, ⇒ АЅ=СЅ. Высота ЅН пирамиды ⊥АВС, следовательно, ⊥ любой прямой в плоскости АВС.
Пусть АВ=ВС=АС= а.
Высота ЅН - медиана равнобедренного треугольника АЅС.⇒ АН=НС=а/2 Проекции ребер ЅА и ЅС равны половине стороны АС. Проекция ЅB=а√3/2 ⇒ ЅВ наибольшее ребро пирамиды, а угол ЅВН - искомый.
Угол между основанием и боковой гранью – двугранный. Его величина определяется градусной мерой линейного угла, сторонами которого являются лучи, проведённые в его гранях перпендикулярно ребру с общим началом на нём.
Проведем НК⊥ВС. Наклонная ЅК⊥ВС по т. о 3-х перпендикулярах. ∠ЅКН=60° (дано).
Угол С в прямоугольном ∆ НКС=60°, катет НК=НС•sin∠C=a2•√3/2=(a√3):4
Из ∆ ЅНК высота ЅН=НК•tg60°=3a/4 ⇒
tg∠SBH=SH:BH=3a•2:4a√3=√3/2
Искомый угол =arctg√3/2
Денис_Петровна
20.03.2022
Ну хорошо вот вам строгое доказательство.Проведем к концам отрезка величиной r,два радиуса r,то треугольник с вершиной в центре окружности равносторонний,и угол при вершине 60 градусов. Проведем радиусы ко всем концам 5 последовательным отрезков равных по величине самому радиусу(как и было сказано в условии) ,то есть последняя вершина будет 6-ой. Тогда yгол A1OA6=60*5=300. Таким образом до полного круга не хватает еще 360-300=60.Значит угол A6OA1=60,тк треугольник A6OA1 равнобедренный Тк боковые стороны равны как радиусы,то равны и углы при основе . И они равны:( 180-60)/2=60. То есть треугольник A6OA1 тоже равносторонний как и все остальные,а значит A6A1=r. А значит Тк при известном положении точки A6 существует только 1 точка A7 лежащая правее A6 ,что угол A6OA7 равен 60,то отсюда очевидно что A1=A7
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Периметр фигуры G равен 8 см, а площадь равна 7 см2. При гомотетии (O; 2) получили фигуру H, гомотетичную фигуре G
ответ: arctg√3/2
Подробное объяснение:
В пирамиде ЅАВС грань АЅС перпендикулярна основанию АВС. Грани АЅВ и СЅВ наклонены под равным углом к основанию, АВ=СВ (дано), ⇒ грани АЅВ и СЅВ равны, ⇒ АЅ=СЅ. Высота ЅН пирамиды ⊥АВС, следовательно, ⊥ любой прямой в плоскости АВС.
Пусть АВ=ВС=АС= а.
Высота ЅН - медиана равнобедренного треугольника АЅС.⇒ АН=НС=а/2 Проекции ребер ЅА и ЅС равны половине стороны АС. Проекция ЅB=а√3/2 ⇒ ЅВ наибольшее ребро пирамиды, а угол ЅВН - искомый.
Угол между основанием и боковой гранью – двугранный. Его величина определяется градусной мерой линейного угла, сторонами которого являются лучи, проведённые в его гранях перпендикулярно ребру с общим началом на нём.
Проведем НК⊥ВС. Наклонная ЅК⊥ВС по т. о 3-х перпендикулярах. ∠ЅКН=60° (дано).
Угол С в прямоугольном ∆ НКС=60°, катет НК=НС•sin∠C=a2•√3/2=(a√3):4
Из ∆ ЅНК высота ЅН=НК•tg60°=3a/4 ⇒
tg∠SBH=SH:BH=3a•2:4a√3=√3/2
Искомый угол =arctg√3/2