1. Из прямоугольного треугольника ABD по теореме Пифагора:
BD = √(AB² - AD²) = √(20² - 12²) = √(400 - 144) = √256 = 16 см
Квадрат высоты, проведенной к гипотенузе, равен произведению отрезков, на которые высота делит гипотенузу:
AD² = BD · DC
DC = AD² / BD = 144 / 16 = 9 см
ВС = BD + DC = 16 + 9 = 25 см
Из прямоугольного треугольника АВС по теореме Пифагора:
AC = √(BC² - AB²) = √(625 - 400) = √225 = 15 см
cos∠C = AC / BC = 15 / 25 = 3/5 = 0,6
2. ΔABD: ∠ADB = 90°,
cos∠A = AD / AB
AD = AB · cos 41° ≈ 12 · 0,7547 ≈ 9,1 см
ΔADH: ∠AHD = 90°,
sin∠A = DH / AD
DH = AD · sin41° ≈ 9,1 · 0,6561 ≈ 6 см
Sabcd = AB · DH ≈ 12 · 6 ≈ 72 см²
Поделитесь своими знаниями, ответьте на вопрос:
В основі прямої призми лежить прямокутний трикутник, катети якого дорівнюють 8 см і 15 см. Площа бічної поверхні призми дорівнює 640 см2. 1. Знайдіть довжину бічного ребра цієї призми (у см 2. Знайдіть об’єм цієї призми (у см3).
В трапеции ∠ВАС = ∠BCA ⇒ и ∠ADE = ∠CED.
ΔADE = ΔCED по двум сторонам и углу между ними (AD = CE, DE - общая, ∠ADE = ∠CED).
2) AD║CF, AC║DF ⇒ ADFC - параллелограмм, значит, ∠DAC = ∠CFE.
∠ACE = ∠FEC как накрест лежащие углы при пересечении AC║DE секущей СЕ. Значит, ΔECF подобен ΔАВС по двум углам.
3) Т.к. ΔECF подобен ΔАВС, то EF/AC = CE/BC
EF/10 = 6/13 ⇒ EF = 60/13
4) Пусть h - высота треугольника АВС, опущенная на боковую сторону.
Тогда Sabc = 13h/2 = √(p(p - a)(p - b)(p - c), где a, b, c - стороны треугольника АВС, р - его полупериметр
13h/2 = √(18 · 5 · 5 · 8)
13h/2 = √(9 · 2 · 5 · 5 · 4 · 2) = 3 · 5 · 4 = 60
h =120/13
5) AC║DF, значит, расстояние от точки А до DE и от точки С до DF одинаковы, т.е. ΔADE и ΔDCF имеют одинаковые высоты, опущенные к основаниям DE и DF соответственно. Значит, площади этих треугольников относятся как длины этих оснований.
Sade/Sdcf = DE/DF
DF = AC = 10 как противолежащие стороны параллелограмма,
DE = DF - EF = 10 - 60/13 = 70/13
Sade/Sdcf = (70/13) / 10 = 7/13