На основании равнобедренного треугольника отметили две различные точки F и E , а на боковых сторонах AB и –BC точки D и G соответственно так, что AD +AE = AC и CF+ CG = AC. Найти угол между прямыми DF и EG, если угол ABC = 70°.
1. По условию, сказано, что нам дана трапеция ABCD и она является равнобедренной, следовательно углы при двух основаниях будут попарно равны, то есть угол B = угол C, и соответственно угол A = угол D(данное условие верно, если изобразить трапецию с вершинами B,C у верхнего основания и A,C у нижнего основания). 2. Равнобедренная трапеция является невыпуклым четырёхугольником, следовательно мы можем определить сумму всех её внутренних углов по формуле : E = 180°*(n - 2), где E - это сумма углов трапеции, а n - количество сторон(4). Далее, по формуле: E = 180°*(4 - 2) = 180° * 2 = 360° 3. Сказано, по условию, что разница противолежащих углов равна 50°, значит для решения можно составить уравнение:( x - угол B или угол C; x - 50° - угол A или угол D): x + x + (x - 50°) + (x - 50°) = 360° 4x - 100° = 360° 4x = 360° + 100° 4x = 460° x = 115°(углы B,C) Следовательно, угол D = угол A = угол B(или C) - 50 ° = 115° - 50° = 65 ° --- ответ: угол A = угол D = 65°; угол B = угол C = 115°.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Дан треугольник KPF, в котором KT, PC и FM – медианы.Даны стороны треугольников. Пропорциональны ли они? а) 3 см, 4 см, 5 см и 4, 5 см, 7, 5 см, 6 см
На основании равнобедренного треугольника отметили две различные точки F и E , а на боковых сторонах AB и –BC точки D и G соответственно так, что AD +AE = AC и CF+ CG = AC. Найти угол между прямыми DF и EG, если угол ABC = 70°.
Объяснение:
ΔАВС-равнобедренный,значит ∠А=∠В=(180°-70°):2=55°.
По условию АD+АЕ=АС и CF+ CG = AC ⇒АD=ЕС и AF=CG.
ΔADF ≈ΔCFG по 2 пропорциональным сторонам и равному углу между ними :∠А=∠В и AD/EC=AF/CG ⇒соответственные углы равны ∠1=∠2 ,∠3=∠4.
ΔFEM : найдем угол ∠М ; ∠Е=∠1, ∠F=∠4 . Сумма углов ∠F+∠Е=180°-55°=125° , тогда ∠М=180°-125°=55°