пересечением пл. (альфа) и пл. треугольника (АВС) является прямая k
прямая k параллельна стороне ВС
в противном случае, она должна пересечь прямую(ВС)
НО точка пересечения должна принадлежать также пл. (альфа)
а это НЕВОЗМОЖНО -
пл. (альфа) и ВС не имеют точек пересечения - по условию они параллельны
значит прямая k ПАРАЛЛЕЛЬНА ВС
прямая k является секущей сторон АВ и АС и делит их на пропорциональные отрезки
отсюда следует , что прямая k и плоскость альфа проходит также через середину стороны АС.
отрезок прямой k (между сторонами АВ и АС)- это средняя линия треугольника АВС
Simbireva
17.05.2023
Рассмотрим треугольники авс и mnc. они подобны по второму признаку подобия: две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны: - cn : cb = cm : ca = 9 : 12 = 12 : 16 = 3 : 4 (коэф. подобия 3/4); - угол с - общий для треугольников. у подобных треугольников соответственные углы вас и nmc равны. они являются также соответственными углами при пересечении двух прямых ав и mn секущей ас. используем один из признаков параллельности двух прямых: если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны. значит, ab ii mn.
пусть середина стороны АВ т. К
пересечением пл. (альфа) и пл. треугольника (АВС) является прямая k
прямая k параллельна стороне ВС
в противном случае, она должна пересечь прямую(ВС)
НО точка пересечения должна принадлежать также пл. (альфа)
а это НЕВОЗМОЖНО -
пл. (альфа) и ВС не имеют точек пересечения - по условию они параллельны
значит прямая k ПАРАЛЛЕЛЬНА ВС
прямая k является секущей сторон АВ и АС и делит их на пропорциональные отрезки
отсюда следует , что прямая k и плоскость альфа проходит также через середину стороны АС.
отрезок прямой k (между сторонами АВ и АС)- это средняя линия треугольника АВС