Найти расстояние между параллельными прямыми в каждом из следующих случаев: а) x+3=0 x-5=0 б) 3x-y+6=0 6x-2y-1=0 в) -3x+4y+2=0 3x-4y+7=0 г) x+y-5=0 2x+2y+9=0
S=ah (где h-высота; a-сторона, к которой проведена высота).
У нас есть прямая AP, которая со стороной MT образует угол PAM, который равен 90°, а следовательно АР является высотой этого параллелограмма.
Численно нам известна сторона МТ(МТ=7+10=17см), к которой проведена высота АР, но не известна сама высота. Рассмотрим треугольник АРТ, мы знаем, что угол А равен 90°, угол Р равен 45°, значит угол Т=180-90-45=45°; т.к. углы при основании равны, то треугольник является равнобедренным и его боковые стороны равны, а значит АТ=АР=10 см.
Теперь по формуле узнаем площадь: S=17*10=170 см²
FATEEV
22.05.2021
Ну очевидно, что длина ребра равна 6 см, а половины ребра 3 см. Скрещивающимися являются любое вертикальное ребро и две пары горизонтальных ребер (два ребра на верхнем и два ребра на нижнем основаниях, не пересекающиеся с данным вертикальным ребром. Расстояние между их серединами равно √(3^2+6^2+3^2)=√(54)=3*√(6) см. Чтоб было понятнее, представь, что куб разрезан пополам плоскостью, параллельной одной из граней. Получившаяся пластинка снова разрезана пополам, но плоскостью, параллельной другой грани. Получился параллелепипед с размерами 3х3х6 см. Искомое расстояние является диагональю этого параллелепипеда.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Найти расстояние между параллельными прямыми в каждом из следующих случаев: а) x+3=0 x-5=0 б) 3x-y+6=0 6x-2y-1=0 в) -3x+4y+2=0 3x-4y+7=0 г) x+y-5=0 2x+2y+9=0
Объяснение:
170 см²
S=ah (где h-высота; a-сторона, к которой проведена высота).
У нас есть прямая AP, которая со стороной MT образует угол PAM, который равен 90°, а следовательно АР является высотой этого параллелограмма.
Численно нам известна сторона МТ(МТ=7+10=17см), к которой проведена высота АР, но не известна сама высота. Рассмотрим треугольник АРТ, мы знаем, что угол А равен 90°, угол Р равен 45°, значит угол Т=180-90-45=45°; т.к. углы при основании равны, то треугольник является равнобедренным и его боковые стороны равны, а значит АТ=АР=10 см.
Теперь по формуле узнаем площадь: S=17*10=170 см²