АлександровнаВладимирович1424
?>

равные хорды равноудалены от центра окружности. докажите. 2) равноудаленные от центра окружности хорды равны. докажите. сразу побольше обьяснений потому что

Геометрия

Ответы

fixer2006

ответ:А (-1, -1, -1),   В (-1, 3, -1),   С (-1, -1, 2)

AB=\sqrt{\big(x_B-x_A\big)^2+\big(y_B-y_A\big)^2+\big(z_B-z_A\big)^2}==\sqrt{\big(-1-(-1)\big)^2+\big(3-(-1)\big)^2+\big(-1-(-1)\big)^2}==\sqrt{0+4^2+0}=4

CB=\sqrt{\big(x_B-x_C\Big)^2+\big(y_B-y_C\big)^2+\big(z_B-z_C\big)^2}==\sqrt{\big(-1-(-1)\big)^2+\big(3-(-1)\big)^2+\big(-1-2\big)^2}==\sqrt{0+16+9}=5

AC=\sqrt{\big(x_C-x_A\big)^2+\big(y_C-y_A\big)^2+\big(z_C-z_A\big)^2}==\sqrt{\big(-1-(-1)\big)^2+\big(-1-(-1)\big)^2+\big(2-(-1)\big)^2}==\sqrt{0+0+3^2}=3

P_{\Delta ABC}=AB+CB+AC=4+5+3=12boxed{\boldsymbol{P_{\Delta ABC}=12}}

Объяснение:

Konchenko1980

ответ:А (-1, -1, -1),   В (-1, 3, -1),   С (-1, -1, 2)

AB=\sqrt{\big(x_B-x_A\big)^2+\big(y_B-y_A\big)^2+\big(z_B-z_A\big)^2}==\sqrt{\big(-1-(-1)\big)^2+\big(3-(-1)\big)^2+\big(-1-(-1)\big)^2}==\sqrt{0+4^2+0}=4

CB=\sqrt{\big(x_B-x_C\Big)^2+\big(y_B-y_C\big)^2+\big(z_B-z_C\big)^2}==\sqrt{\big(-1-(-1)\big)^2+\big(3-(-1)\big)^2+\big(-1-2\big)^2}==\sqrt{0+16+9}=5

AC=\sqrt{\big(x_C-x_A\big)^2+\big(y_C-y_A\big)^2+\big(z_C-z_A\big)^2}==\sqrt{\big(-1-(-1)\big)^2+\big(-1-(-1)\big)^2+\big(2-(-1)\big)^2}==\sqrt{0+0+3^2}=3

P_{\Delta ABC}=AB+CB+AC=4+5+3=12boxed{\boldsymbol{P_{\Delta ABC}=12}}

Объяснение:

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

равные хорды равноудалены от центра окружности. докажите. 2) равноудаленные от центра окружности хорды равны. докажите. сразу побольше обьяснений потому что
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

vmnk38
Valerii276
tsarkovim
vodexshop2
алексеевич810
yelenaSmiryagin
in-1973
Anatolevich1506
jenek-f
gorushko-tabak3
krisrespect2
mariokhab
olgabylova6223
ba5-m
sahabiev1987