Рассмотрим две пересекающиеся в точке M прямые a и b. Через две пересекающиеся прямые можно провести плоскость, назовем её P. Проведем прямую c, которая пересекает прямые a и b в точках A и B соответственно. A принадлежит a -> A принадлежит P B принадлежит b -> B принадлежит P -> прямая c лежит в плоскости P
с - произвольная прямая -> все прямые, которые пересекают a и b и не проходят через M - точку пересечения прямых a и b лежат с этими прямыми в одной плоскости.
Теперь рассмотрим случай, когда прямые проходят через точку пересечения M прямых a и b.
Возьмем произвольную точку N, которая не лежит в плоскости P и проведем прямую через точки N и M.
Прямая NM не принадлежит плоскости P.
Итак, основной вывод.
Прямые, которые пересекают две пересекающиеся прямые и не проходят через их точку пересечения всегда лежат с этими прямыми в одной плоскости. Те прямые, которые проходят через точку пересечения пересекающихся прямых не всегда лежат с ними в одной плоскости.
Belik-elena20111
24.02.2022
Рисуем трапецию АВСД с основаниями меньшим ВС и большим АД, проводим диагональ АС. 1. Рассмотрим ΔАВС. Т.к. он по условию равнобедренный, / ВАС=/ АСВ; (1) 2. Т.к .АС пересекает параллельные прямые ВС и АД. то / АСВ =/ САД (2) Из (1) и (2) ⇒/ ВАД = 2/ САД; (3) 3. Т.К. трапеция равнобокая, / АВС = / ВСД; / ВАД = / АДС; ( 4) 4. Рассмотрим Δ АСД. / АСД по условию 90°, из (3) и (4) ⇒ / АДС = / ВАД = 2/ САД.(5) Т.к, сумма углов Δ равна 180°, то / САД + / АДС =90°; 3/ САД = 90°; / САД =30°; ⇒ / АДС 60°; 5. / ВСД =/ АСВ + 90° = 120° Мы могли бы тупой угол также определить из ΔАВС: 180° - 2·30°=120°) ответ острые углы трапеции равны 60°, тупые 120°
Рассмотрим две пересекающиеся в точке M прямые a и b. Через две пересекающиеся прямые можно провести плоскость, назовем её P.
Проведем прямую c, которая пересекает прямые a и b в точках A и B соответственно.
A принадлежит a -> A принадлежит P
B принадлежит b -> B принадлежит P
-> прямая c лежит в плоскости P
с - произвольная прямая -> все прямые, которые пересекают a и b и не проходят через M - точку пересечения прямых a и b лежат с этими прямыми в одной плоскости.
Теперь рассмотрим случай, когда прямые проходят через точку пересечения M прямых a и b.
Возьмем произвольную точку N, которая не лежит в плоскости P и проведем прямую через точки N и M.
Прямая NM не принадлежит плоскости P.
Итак, основной вывод.
Прямые, которые пересекают две пересекающиеся прямые и не проходят через их точку пересечения всегда лежат с этими прямыми в одной плоскости.
Те прямые, которые проходят через точку пересечения пересекающихся прямых не всегда лежат с ними в одной плоскости.