sbn07373
?>

Чему равны стороны прямоугольника, если его периметр равен 42 см, а площадь — 68 см2?

Геометрия

Ответы

andrey00713

меньшая сторона 8см,большая 13см вот так вроде бы

Объяснение:

Aleksandrovna370

Доказательство:

Т.к. ABCD - параллелограмм, то AB//CD и AD//BC.

∠ECD = ∠CEB как накрест лежащие при параллельных прямых AB и CD и секущей EC.

∠EDC = ∠DEA как накрест лежащие при параллельных прямых AB и CD и секущей ED.

Т.к. EC = ED , то ΔECD - равнобедренный с основанием CD.

Значит ∠ECD = ∠EDC как углы при основании.

Следовательно ∠CEB = ∠DEA

ΔEBC = ΔEAD по двум сторонам и углу между ними (EB = EA по условию.)

См. рисунок 2.

Из равенства треугольников EBC и EAD следует, что ∠EBC = ∠EAD

и ∠BCE = ∠ADE

∠BCD = ∠BCE + ∠ECD

∠ADC = ∠ADE + ∠EDC

Следовательно ∠BCD = ∠ADC

Продолжим сторону AD влево.

∠FAB = ∠ABC как накрест лежащие при параллельных прямых AD и BC и секущей AB.

∠FAB = ∠ADC как соответственные при параллельных прямых AB и DC и секущей AD

Собирая все вместе получаем, что ∠ABC = ∠BCD = ∠CDA = ∠DAB

Получается, что ABCD - параллелограмм в котором все углы равны. Следовательно ABCD - прямоугольник


решить геометрическую задачу. Фото прикрепил.
решить геометрическую задачу. Фото прикрепил.
lalaland2744
Грань SCD и плоскость основания пирамиды пересекаются по прямой CD. Чтобы найти угол между этими плоскостями, рассмотрим треугольник SBC. Треугольник SBC -прямоугольный: SB перпендикулярна плоскости основания, а значит любой прямой, лежащей в плоскости основания, SB перпендикулярна BC. BC перпендикулярна CD, как стороны квадрата. SC- наклонная к плоскости основания перпендикулярна прямой CD по теореме о трех перпендикулярах-прямая (CD) проведенная в плоскости через основание наклонной(SC) перпендикулярно ее проекции (BC) на эту плоскость перпендикулярна и к самой наклонной.SC лежит в плокости грани SCD и перпендикулярна CD, BC лежит в плоскости основания и перпендикулярна CD , следовательно угол SCB -это угол между двумя плоскостями ABCD и SCD. Рассмотрим треугольник SBC  и из этого треугольника найдем  угол SCB.
Найдем сторону квадрата: 
BD²=2BC²,  (4√2)²=2BC², BC²= 16·2/2=16, BC=4
ИЗ треугольника SBD ( треугольник SBD прямоугольный так как SB перпендикулярно плоскости основания)   найдем SB:
SB²=SD²-BD²
SB²=(4√5)²-(4√2)²= 16·5-16·2=80-32=48, SB=√48=4√3.
Из треугольника SBC : tg∠SCB=SB/BC=4√3/4=√3
tg∠SCB=√3, ∠SCB=60 градусов

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Чему равны стороны прямоугольника, если его периметр равен 42 см, а площадь — 68 см2?
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

mospaskrasnogorbukh
Lebedeva1577
vanvangog199826
s45983765471717
mokeevahelena
ntyremsk1
vypolga1347
sakalrip
Guskov
Суханова1532
dilovarnazarov1986
morozov1605
Zuriko1421
sigidinv
dddddd68