sin=прот.ст./гипот
sinA=BC/AB=4/5=0,8
sinB=AC/AB=3/5=0,6
cos=прил.ст./гипот.
соsA=AC/AB=3/5=0,6
cosB=BC/AB=4/5=0,8
tg=прот.ст./прил.ст.
tgA=BC/AC=4/3=1 1/3
tgB=AC/BC=3/4=0,75
ctg=прил.ст./прот.ст.
ctgA=AC/BC=0,75
ctgB=1 1/3
Смотря как ты начертишь треугольник. Если ОМ будет лежать против угла в 30 градусов, то значит равна половине гипотенузы, 24/2=12
А если это другой из катетов, то находишь по теореме Пифагора
cos=прил.сторон./гипот.
sin=прот./гип.
один из катетов, который будет лежать против 30°, равен половине гипотенузы, 12/2=6, а другой по теореме Пифагора
а) 12²-6²=144-36=108
б) если треугольник прямоугольный и один из углов равен 45°, то значит он равнобедренный, 180°-(90°+45°)=45°
Поделитесь своими знаниями, ответьте на вопрос:
Найти стороны параллелограмма из предыдущей задачи если известно что даюиаоонали равны 10см и 12 см.ПРЕДЫДУЩАЯ ЗАДАЧА:докажите что сиредины сторон 4угольника являются вершинами параллелограмма.
1) MPDA - равнобедренная трапеция
2) 36 см²
Объяснение:
1) МР - средняя линия треугольника ВСК, поэтому
МР║ВС и МР = 1/2 ВС = 6 см
МР║ВС, ВС║AD, ⇒ МР║AD.
Значит, MPDA трапеция. А так как МА = PD = 5 см, то
MPDA - равнобедренная трапеция.
2) Проведем высоты трапеции МН и PL. MPLH - прямоугольник, так как у него все углы прямые, тогда
HL = MP = 6 см.
ΔАМН = ΔDPL по гипотенузе и катету (∠АНМ = ∠DLP = 90°, так как проведены высоты, АМ = DP по условию и МН = PL как высоты), значит
АН = DL = (AD - HL)/2 = (12 - 6)/2 = 3 см
ΔАМН: прямоугольный, египетский, значит МН = 4 см.
Smpda = (MP + AD)/2 · MH = (6 + 12)/2 · 4 = 36 см²