Поделитесь своими знаниями, ответьте на вопрос:
Найдите ∠АСD, если его сторона СА касается окружности, а CD проходит через центр окружности. Дуга AD окружности, заключённая внутри этого угла, равна 100°. 2) Найдите угол АСО, если его сторона СА касается окружности, О — центр окружности, а дуга AD окружности, заключённая внутри этого угла, равна 140°. 3) Отрезки AB и DC лежат на параллельных прямых, а отрезки AC и BD пересекаются в точке M. Найдите MC, если AB = 16, DC = 24, AC = 25. 4) Отрезки AB и DC лежат на параллельных прямых, а отрезки AC и BD пересекаются в точке M. Найдите MC, если AB = 10, DC = 25, AC = 56. 5) На сторонах угла BAC и на его биссектрисе отложены равные отрезки AB, AC и AD(АD лежит на биссектрисе Величина BDC = 160°. Определите величину ∠BAC. 6) На сторонах угла BAC равного 20°, и на его биссектрисе отложены равные отрезки AB, AC и AD. Определите величину ∠BDC. 7) Стороны AC, AB, BC треугольника ABC равны 2 , и 2 соответственно. Точка K расположена вне треугольника ABC, причём отрезок KC пересекает сторону AB в точке, отличной от B. Известно, что треугольник с вершинами K, A и C подобен исходному. Найдите косинус угла AKC, если ∠ ΚΑΧ > 90°. 8) Стороны AC, AB, BC треугольника ABC равны 7, 5 и 3 соответственно. Точка K расположена вне треугольника ABC, причём отрезок KC пересекает сторону AB в точке, отличной от B. Известно, что треугольник с вершинами K, A и C подобен исходному. Найдите косинус угла AKC, если ∠ ΚΑΧ > 90°. 9) В прямоугольном треугольнике ABC с прямым углом C известны катеты: AC BC 6, 8. Найдите медиану CK этого треугольника. 10) В прямоугольном треугольнике ABC с прямым углом C известны катеты: AC BCВ прямоугольном треугольнике ABC с прямым углом C известны катеты: AC=5, BC 12 . Найдите медиану CK этого треугольника.
РА - перпендикуляр к площади параллелограмма АВСД. Укажите вид параллелограмма, если РВ перпендикулярен ВС. а) ромб, б) прямоугольник; в) квадрат.
Объяснение: РВ - наклонная. АВ - её проекция на плоскость АВСД. По т. о 3-х перпендикулярах если наклонная (РВ) перпендикулярна прямой (ВС) на плоскости, то её проекция на ту же плоскость перпендикулярна данной прямой. Следовательно, АВ⊥ВС, и угол АВС - прямой. Противоположные углы параллелограмма равны. ⇒ ∠Д=∠В=90°, поэтому из суммы углов четырехугольника ∠А+∠С=360°-2•90°=180°, и каждый из них равен 180°:2=90°.
Углы четырехугольника АВСД прямые. ⇒ АВСД - прямоугольник. Он может быть и квадратом. если его стороны будут равны.