В правильной пирамиде высота падает в центр основания, то есть в центр правильного многоугольника. Правильный четырёхугольник это квадрат, а его центр находится на пересечении диагоналей. Боковые грани правильной пирамиды это равнобедренные треугольники, которые равны. Апофема это высота боковой грани. В квадрате все стороны равны, диагонали равны и делятся точкой пересечения пополам.
Пусть P∈AD и MP⊥AD, тогда MP=17см и AP=PD т.к. в равнобедренном Δ высота является и медианой.
Пусть H∈(ABC) и MH⊥(ABC), тогда AC∩BD=H.
ΔMHP - прямоугольный, найдём неизвестный катет.
см.
ΔAHD - равнобедренный, поэтому PH не только медиана, но и высота.
ΔHPD - прямоугольный, ∠HDP=45° т.к. диагонали квадрата являются и биссектрисами, значит HP=PD=8см - равны как катеты, прямоугольного Δ с острым углом в 45°.
AD=2·PD=2·8см=16см.
Площадь квадрата можно найти через сторону, а площадь равнобедренного треугольника через сторону и высоту опущенную на эту сторону.
S(ABCD) = AD²=16² см².
S(AMD) = MP·AD:2=17·16:2 см².
S(бок. пов.) = 4·S(AMD)=4·17·16:2 см²=2·17·16 см².
S(полн. пов.) = S(ABCD)+S(бок. пов.) = 16²см²+2·17·16 см² = 32·(8+17)см² = 8·4·25см²=800см².
ответ: 800см².
• На данном рисунке 6 - это длина рёбра основания, 4 - высота и одновременно медиана (так как исходный треугольник в основании - равнобедренный), половина равна 3, рассмотрим один из треугольников, которые получаются разделением медианы (равной 4), по обратной теореме Пифагора - треугольник прямоугольный, сторона равна:
a = √(4² + 3²) = √25 = 5 (а - боковая сторона равнобедренного треугольника, лежащего в основании)
• Рассмотрим треугольник, в котором угол равен 60°, а нижняя часть, как мы нашли, равна 5, сам треугольник прямоугольный, поэтому:
tg60° = x/5
x - боковое ребро
x = tg60° • 5 = 5√3
• Sполн. = Sбок. + 2Sосн.
Sбок. = Pосн. • h = (5+5+6) • 5√3 = 16 • 5√3 = 80√3
Sосн. = 6 • 4 • ½ = 12
Sполн. = 80√3 + 12
Поделитесь своими знаниями, ответьте на вопрос:
В теоретическом материале была возможность ознакомиться с конструкциями, создаваемыми с циркуля и линейки. Назовём их основными конструкциями: 1. на данном луче от его начала отложить отрезок, равный данному. 2. Построение угла, равного данному. 3. Построение биссектрисы угла. 4. Построение перпендикулярных прямых. 5. Построение середины отрезка.
геометр чтоли как ришить думаю 3