Яна_Софья
?>

2 Найдите длину медианы, проведенной к стороне ВС треугольника АВС, если А (4; -2); В (1; -4); С (2; 0).

Геометрия

Ответы

Tatyana1426
Вот пришло в голову решение :) Так-то задачка ерундовая :)
Я продлеваю перпендикуляры HK и HM за точку H до пересечения с BA в точке A1 и BC в точке C1 (ну, точки лежат на продолжениях... из за того, что ∠ABC острый, эти точки есть и лежат где положено :) )
Для треугольника A1BC1 H - точка пересечения высот (ну двух-то точно :) - A1M и C1K), поэтому A1C1 перпендикулярно BH, и, следовательно, параллельно AC;
то есть ∠BAC = ∠BA1C;
Точки K и M лежат на окружности, построенной на A1C1, как на диаметре, поэтому
∠BA1C + ∠KMC = 180°; как противоположные углы вписанного четырехугольника. Или, что же самое, ∠BA1C = ∠BMK;
следовательно ∠BAC = ∠BMK; 
и треугольники ABC и BMK имеют равные углы. То есть, подобны.

Следствие, которое важнее задачи :) Четырехугольник AKMC - вписанный. То есть через эти 4 точки можно провести окружность.

Дополнение. Тривиальный решения тут такой.
∠KHB = ∠A; ∠MHB = ∠C;
BK =  BH*sin(A) = BC*sin(C)*sin(A);
BM = BH*sin(C) = BA*sin(A)*sin(C);
То есть у треугольников ABC и MBK угол B общий, и стороны общего угла пропорциональны BM/BA = BK/BC = sin(A)*sin(B); значит треугольники подобны.
коэффициент подобия sin(A)*sin(C), что тоже полезное следствие.
vovababkin1477
Условие задачи дано с ошибкой: если в основании прямоугольного параллелепипеда квадрат, то диагональ основания составляет с боковой гранью угол 45°, а не 30°. Кроме того, по этим данным невозможно найти высоту прямоугольного параллелепипеда.

Задача встречается в таком виде:
Основанием прямоугольного параллелепипеда служит квадрат. Диагональ параллелепипеда  равна 12, она составляет угол 30° с плоскостью боковой грани. Найдите объём прямоугольного параллелепипеда.

DB₁ - диагональ прямоугольного параллелепипеда.
Угол между прямой и плоскостью - угол между прямой и ее проекцией на эту плоскость.
В₁С₁⊥(DD₁C₁), значит DC₁ - проекция диагонали DB₁ на плоскость (DD₁C₁), а ∠B₁DC₁ = 30°.

ΔB₁C₁D: ∠C₁ = 90°,
                 B₁C₁ = DB₁ · sin30° = 12 · 1/2 = 6 - ребро основания
                 DC₁ = DB₁ · cos 30° = 12 · √3/2 = 6√3

ΔDCC₁: ∠C = 90°, по теореме Пифагора
               СС₁ = √(DС₁² - DC²) = √(108 - 36) = √72 = 6√2 - высота параллелепипеда

V = Sосн·H = 6² · 6√2 = 216√2

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

2 Найдите длину медианы, проведенной к стороне ВС треугольника АВС, если А (4; -2); В (1; -4); С (2; 0).
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

sse1105
kristeisha871
АркадьевичБундин789
Александр1991
pri02
Olga1509
Klyucharyova
megaromeo
vikka30
dimaaristov
ooofishai4064
sveta740450
михаил
ДеречинскийИрина1149
skalegin68