ответ:S=12P⋅h,S=12⋅9⋅7√2=97√4
Объяснение:
найдем сторону основания правильной пирамиды по формуле a = R√3, a = √ · √ = 3
найдем периметр основания Р = 3·а, Р = 9
радиус вписанной в правильный треугольник окружности в 2 раза меньше радиуса описанной около этого треугольника окружности, т.е. R = 2r, тогда OP=3√2
из прямоугольного треугольника МОР по теореме Пифагора находим апофему МР: MP=MO2+OP2−−−−−−−−−−√,
МР=1+|3√2|2−−−−−−−−√=1+34−−−−−√=7√2
вычислим площадь боковой поверхности правильной пирамиды: S=12P⋅h,S=12⋅9⋅7√2=97√4
Поделитесь своими знаниями, ответьте на вопрос:
Жасады экожуйе корсетыныз
В ромбе треугольник АВD = треугольнику ВDС , по 3-ему признаку равенства треугольников (по трем сторонам) (т.к. ВD - общая сторона, АВ = АD = DC = ВС) Отсюда:
Угол А = Углу С = 60 градусов.
АС и BD - диагонали ромба, они же являются и биссектрисами соответствующих углов!
Отсюда Угол B = угол ABD + угол DBC = 2 угла ABD = 2 * 60 = 120
Аналогично угол D = 120 градусов.
ответ: 60, 120, 60, 120.
по моему так