Основа піраміди - рівнобедрений трикутник з кутом бета при основі та радіусом описаного кола R. Знайдіть площу повної поверхні піраміди, якщо всі її грані нахилені до площини основи під кутом альфа
У задачи 2 решения. 1) Хорда находится между центром окружности и касательной. Тогда искомое расстояние от хорды до касательной - разность между длиной радиуса, проведенного в точку касания, и расстоянием от центра окружности до хорды. Пусть К - точка касания, ОК - радиус, проведенный в нее, ОМ - расстояние от центра до хорды ( часть радиуса). ОМ⊥АВ, т.к. радиус перпендикулярен касательной, а хорда - ей параллельна. По свойству радиуса, перпендикулярного хорде, он делит ее пополам. АМ=ВМ=36:2=18. ОА - радиус. АМ - катет. МО=√(АО²-ОМ²)=80 Отсюда искомое расстояние МК=82-80=2 (ед. длины). 2) Порядок расположения - хорда, центр, касательная. Тогда искомое расстояние МК=ОК+ОМ=82+80=162 (ед. длины).
s9152992722344
18.08.2020
Дано АВС и А1В1С1 В=В1=90 А=А1 ВН перпенд АС В1Н1 перпенд А1С1 ВН=В1Н1 доказать АВС=А1В1С1 док-во очевидно, что углы с=с1 значит, треугольники подобны. Соответственно, подобны все величины, в том числе и соответствующие высоты. Но так как высоты равны, то коэфф. подобия равен 1 , соответственно все стороны подобны с коэфф. 1, т.е. равны. Отсюда, треугольники равны.
Можно докавзать чуть по-другому, но там дольше. Т.е. высоты разбивают на два треуг, потом в каждом треуг. сторона и углы равны, значит другие стороны равны. И т.д. и т.п. итог- треуг равны.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Основа піраміди - рівнобедрений трикутник з кутом бета при основі та радіусом описаного кола R. Знайдіть площу повної поверхні піраміди, якщо всі її грані нахилені до площини основи під кутом альфа
1) Хорда находится между центром окружности и касательной.
Тогда искомое расстояние от хорды до касательной - разность между длиной радиуса, проведенного в точку касания, и расстоянием от центра окружности до хорды.
Пусть К - точка касания, ОК - радиус, проведенный в нее, ОМ - расстояние от центра до хорды ( часть радиуса).
ОМ⊥АВ, т.к. радиус перпендикулярен касательной, а хорда - ей параллельна.
По свойству радиуса, перпендикулярного хорде, он делит ее пополам.
АМ=ВМ=36:2=18.
ОА - радиус. АМ - катет. МО=√(АО²-ОМ²)=80
Отсюда искомое расстояние МК=82-80=2 (ед. длины).
2)
Порядок расположения - хорда, центр, касательная.
Тогда искомое расстояние МК=ОК+ОМ=82+80=162 (ед. длины).