Вписанный треугольник АВС в окружность с центром О. Градусная мера всей окружности 360°. Найдем градусные меры трех дуг, для этого обозначим одну часть через х, получится уравнение: х+2х+3х=360 х=360/6=60° Получается градусная мера дуги АВ=60°, дуги ВС=120°, дуги АС= 180°. Углы АВС, ВСА и САВ являются вписанными углами (вершины их лежат на окружности, а обе стороны пересекают эту окружность). Градусная мера вписанного угла равна половине дуги, на которую он опирается. <АВС =180/2=90°, <ВСА =60/2=30° и <САВ =120/2=60°. Исходя из того, что <АВС =90°, делаем вывод, что ΔАВС - прямоугольный и гипотенуза АС является диаметром окружности (вписанный угол, опирающийся на диаметр - прямой). Напротив меньшей стороны лежит меньший угол, значит катет АВ=17. Катет, лежащий против угла 30°, равен половине гипотенузы, следовательно радиус окружности ОА=ОВ=ОС=АВ=17 ответ: 17
Yekaterina_Popova1413
30.09.2020
Пусть нам дана правильная четырехугольная пирамида KABCD Проведем KO перпендикулярно плоскости ABCD Проведем диагональ AС в ABCD ABCD - квадрат(т.к пирамида правильная) ⇒ AB=BC=CD=AD Рассмотрим ΔACD - прямоугольный По теореме Пифагора: AC²=AD²+CD² Т.к. AD=CD Можно записать так: AC²=2AD² AC=√2AD²=√2*4²=√2*16=√32=4√2 AO=OC=2√2 - т.к. диагонали квадрата точкой пересечения делятся пополам Рассмотрим ΔAOK - прямоугольный По теореме Пифагора: AK²=AO²+KO² KO²=AK²-AO² KO=√AK²-AO²=√17-8=√9=3 KO=H=3 Sосн=AD²=4²=16 V=Sосн*H/3=16*3/3=16 ответ: 16 (Я правильно понял, что боковое ребро равно √17?)
Объяснение:
Дано: tg a + ctg a = 9.
Примем tg a = t, ctg a = 1/t.
Подставим в заданное уравнение: t + 1/ t = 9.
Приведя к общему знаменателю, получаем квадратное уравнение:
t² - 9t + 1 = 0.
Квадратное уравнение, решаем относительно t:
Ищем дискриминант:
D=(-9)^2-4*1*1=81-4=77;
Дискриминант больше 0, уравнение имеет 2 корня:
t_1 = (√77-(-9))/(2*1) = (√77+9)/2 = √77/2+9/2=√77/2+4.5 ≈ 8.887482
t_2 = (-√77-(-9))/(2*1) = (-√77+9)/2 = -√77/2+9/2 = -√77/2+4.5 ≈ 0.112518.
Так как 1/8,887482 = 0,112518, а 1/8,887482 = 0,112518, то мы получили 2 пары значений тангенса и котангенса угла.
Далее используем формулы перехода от одной функции к другой.
sin α = tg α/+-√(1 + tg²α) = (√77/2+4.5)/(√(1 + (√77/2+4.5)²) = √((9-√77)/18) ≈ 0,111812 .
Аналогично для второго значения тангенса находим:
sin α = √((9+√77)/18) ≈ 0,993729.
Косинусы равны обратным значениям синусов.
cos α = √((9+√77)/18) ≈ 0,993729.
cos α = √((9-√77)/18) ≈ 0,111812 .