225√3 ед²
Объяснение:
Дано: КМРТ - трапеция, КМ=РТ, ∠Т=60°, КР⊥РТ; КТ=20√3. Найти S(КМРТ).
Рассмотрим ΔКРТ - прямоугольный; ∠РКТ=90-60=30°, значит, РТ=0,5КТ=10√3 по свойству катета, лежащего против угла 30 градусов.
Проведем высоту РН и рассмотрим ΔРТН - прямоугольный;
∠ТРН=90-60=30°, значит, ТН=0,5РТ=5√3.
Найдем РН по теореме Пифагора:
РН²=РТ²-ТН²=300-75=225; РН=15.
Найдем МР. ∠МРК=∠РКН=30° как внутренние накрест лежащие при МР║КТ и секущей КР; ∠МКР=60-30=30°, значит, ΔКМР - равнобедренный, МР=КМ=10√3.
S(КМРТ)=(МР+КТ)/2 * РН = (10√3+20√3)/2 * 15=(15√3)*15=225√3 ед²
ответ: 75√3 ед²
Объяснение:
Дано: КМРТ - трапеция, КМ=РТ, ∠Т=60°, КР⊥РТ; КТ=20. Найти S(КМРТ).
Рассмотрим ΔКРТ - прямоугольный; ∠РКТ=90-60=30°, значит, РТ=0,5КТ=10 по свойству катета, лежащего против угла 30 градусов.
Проведем высоту РН и рассмотрим ΔРТН - прямоугольный;
∠ТРН=90-60=30°, значит, ТН=0,5РТ=5.
Найдем РН по теореме Пифагора:
РН²=РТ²-ТН²=100-25=75; РН=√75=5√3.
Найдем МР. ∠МРК=∠РКН=30° как внутренние накрест лежащие при МР║КТ и секущей КР; ∠МКР=60-30=30°, значит, ΔКМР - равнобедренный, МР=КМ=10.
S(КМРТ)=(МР+КТ)/2 * РН = (10+20)/2 * 5√3 = 15*(5√3)=75√3 ед²
Поделитесь своими знаниями, ответьте на вопрос:
№200 .два окружности имеют внешнее касание.расстояние между их центрами =22см.найдите радиусы окружностей, если они относятся як 4: 7.
4х+7х=22, 11х=22, х=2, теперь 4*2=8 см и 7*2=14 см
ответ: 8см и 14 см