Образующая конуса l=8см составляет с плоскостью основания угол α=60° . Найдите высоту конуса, площадь основания, площадь боковой и полной поверхности и объем конуса.
1. , где n - градусная мера соответственного центрального угла. Найдем радиус окружности: , где S - площадь круга. Найдем длину дуги:
ответ: см. 2. Найдем сторону квадрата a:
Радиус вписанной в квадрат окружности равен: , где a - сторона квадрата.
Площадь вписанного треугольника равна: , где c - сторона правильного треугольника. Необходимо найти сторону правильного треугольника. Так как нам известен радиус описанной около треугольника окружности, то воспользуемся формулой:
Найдем площадь правильного треугольника: . ответ: см.
Lyalikova
02.11.2021
1) Раз ВО разделила угол В пополам, то угол ОВС=1/2 углаВ=160/2=80о. Отношение 3:5 показывает, что угол В разделен на 8 частей и 3 части, т. е. 160/8*3=60о приходится на угол АВЕ, а 160/2*5=100о приходится на угол ЕВС. Отсюда угол ЕВО= разности между углами ЕВС и ОВС, т. е. 100о-80о=20о. Получается, что на чертеже луч ВЕ расположен правее луча ВО. 2) Обозначим высоту ВН. Р тр-ка АВН: АВ+АН+5=18; Р тр-ка НВ: ВС+НС+5=26. Сложим эти равенства: АВ+АН+ВС+НС+10=44; АВ+ВС+(АН+НС) =34; АВ+ВС+АС=34, а левая часть это и есть периметр тр-ка АВС. 3) Взят острый угол между высотами 20о. Значит смежный с ним будет 160о. Теперь мы можем определить угол при вершине: 360о-160о-2*90о=20о. (Сумма внутренних углов в выпуклом четырехугольнике равна 360о. ) Тогда на долю двух углов при основании приходится 180о-20о=160о, а на долю каждого по 80о, т. к. углы при основании в равнобедренном тр-ке равны.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Образующая конуса l=8см составляет с плоскостью основания угол α=60° . Найдите высоту конуса, площадь основания, площадь боковой и полной поверхности и объем конуса.
Найдем радиус окружности:
, где S - площадь круга.
Найдем длину дуги:
ответ: см.
2. Найдем сторону квадрата a:
Радиус вписанной в квадрат окружности равен:
, где a - сторона квадрата.
Площадь вписанного треугольника равна:
, где c - сторона правильного треугольника.
Необходимо найти сторону правильного треугольника. Так как нам известен радиус описанной около треугольника окружности, то воспользуемся формулой:
Найдем площадь правильного треугольника:
.
ответ: см.