Полное условие задачи: Один из острых углов прямоугольного треугольника равен 38°. Найдите острый угол между гипотенузой и биссектрисой прямого угла.
Пусть в треугольнике АВС ∠С = 90°, СМ - биссектриса. Рассмотрим ΔАСМ: ∠САМ = 38° по условию, ∠АСМ = 90° / 2 = 45° так как СМ биссектриса. ∠ВМС = ∠САМ + ∠АСМ = 38° + 45° = 83° так как внешний угол треугольника равен сумме двух внутренних, не смежных с ним. Углом между прямыми считается меньший из образовавшихся углов, значит угол между гипотенузой и биссектрисой прямого угла 83°.
sve707ta
10.09.2020
Полное условие задачи: Один из острых углов прямоугольного треугольника равен 38°. Найдите острый угол между гипотенузой и биссектрисой прямого угла.
Пусть в треугольнике АВС ∠С = 90°, СМ - биссектриса. Рассмотрим ΔАСМ: ∠САМ = 38° по условию, ∠АСМ = 90° / 2 = 45° так как СМ биссектриса. ∠ВМС = ∠САМ + ∠АСМ = 38° + 45° = 83° так как внешний угол треугольника равен сумме двух внутренних, не смежных с ним. Углом между прямыми считается меньший из образовавшихся углов, значит угол между гипотенузой и биссектрисой прямого угла 83°.
Один из острых углов прямоугольного треугольника равен 38°. Найдите острый угол между гипотенузой и биссектрисой прямого угла.
Пусть в треугольнике АВС ∠С = 90°, СМ - биссектриса.
Рассмотрим ΔАСМ:
∠САМ = 38° по условию,
∠АСМ = 90° / 2 = 45° так как СМ биссектриса.
∠ВМС = ∠САМ + ∠АСМ = 38° + 45° = 83° так как внешний угол треугольника равен сумме двух внутренних, не смежных с ним.
Углом между прямыми считается меньший из образовавшихся углов, значит угол между гипотенузой и биссектрисой прямого угла 83°.