martinzdraste
?>

Из точки М к плоскости альфа проведены две наклонные (рис. 1), длины которых относятся как 13 : 15 . Их проекции на эту плоскость равны 10 см и 18 см. Найдите расстояние от точки М до плоскости альфы.

Геометрия

Ответы

sav4ukoxana7149
ответ. Если у пары внутренних накрест лежащих углов один угол заменить вертикальным ему, то получится пара углов, которые называются соответственными углами данных прямых с секущей. Что и требовалось объяснить.
Из равенства внутренних накрест лежащих углов следует равенство соответственных углов, и наоборот. Допустим, у нас есть две параллельные прямые (так как по условию внутренние накрест лежащие углы равны) и секущая, которые образуют углы 1, 2, 3. Углы 1 и 2 равны как внутренние накрест лежащие. А углы 2 и 3 равны как вертикальные. Получаем: ∠∠1 = ∠∠2 и ∠∠2 = ∠∠3. По свойству транзитивности знака равенства следует, что ∠∠1 = ∠∠3. Аналогично доказывается и обратное утверждение.
Отсюда получается признак параллельности прямых по соответственным углам. Именно: прямые параллельны, если соответственные углы равны. Что и требовалось доказать.
Ivanovich-A.V

№49: DK = 2

№50:  MD = 16

Объяснение:

№49:

Т.к. ABCD - параллелограмм, AB || CD, то есть AB || CK. Тогда BK - секущая при  параллельных прямых. Следовательно, ∠ABK=∠BKC, как накрест лежащие углы при параллельных прямых. Рассмотрим треугольник BCK: ∠CBK=∠BKC (∠ABK=∠CBK, по условию, а ∠ABK=∠BKC), следовательно, треугольник BCK равнобедренный. По свойству равнобедренного треугольника боковые стороны равны, то есть BC = CK = 8 (по условию). BC = CD + DK, CD = AB = 6 (по свойству параллелограмма), тогда DK = BC - CD = 8 - 6 = 2.

№50:

Т.к. ABCD - параллелограмм, BC || AD, то есть BC || MD. Тогда CM - секущая при параллельных прямых. Следовательно ∠BCM=∠CMA, как накрест лежащие углы при параллельных прямых.. Рассмотрим треугольник CAM: ∠CMA=∠MCA (∠MCA = ∠BCM по условию, а ∠BCM=∠CMD), следовательно, треугольник CAM равнобедренный. По свойству равнобедренного треугольника боковые стороны равны, то есть AM = AC = 10 (по условию). MD = AM + AD, BC = AD = 6 (по свойству параллелограмма), тогда MD = AM + AD = 10 + 6 = 16.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Из точки М к плоскости альфа проведены две наклонные (рис. 1), длины которых относятся как 13 : 15 . Их проекции на эту плоскость равны 10 см и 18 см. Найдите расстояние от точки М до плоскости альфы.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

katushak29
NIKOLAI
kia80
Vasileva
bal4shovser16
Reznikova1075
nsoro937
Akolomaeva4
fedorenkoroman
Vipnikavto58
natalyaSvetlana
Андрей Анна22
seleznev1980
muz-cd
llmell6