площадь трапеции равна произведению полусуммы ее оснований на высоту:
s = ((ad + bc) / 2) · bh,
где высота трапеции — это перпендикуляр, проведенный из любой точки одного из оснований к прямой, содержащей другое основание.
доказательство.рассмотрим трапецию abcd с основаниями ad и bc, высотой bh и площадью s.
докажем, что s = ((ad + bc) / 2) · bh.диагональ bd разделяет трапецию на два треугольника abd и bcd, поэтому s = sabd + sbcd. примем отрезки ad и bh за основание и высоту треугольника abd, а отрезки bc и dh1 за основание и высоту треугольника bcd. тогда
sabc = ad · bh / 2, sbcd = bc · dh1.
так как dh1 = bh, то sbcd = bc · bh / 2.таким образом,
s = ad · bh / 2 + bc · bh = ((ad + bc) / 2) · bh.
теорема доказана.
cos∠C=→CA*→CB/(I→CAI*I→CBI) (1)
1. →CA(3-4;9-2) от координат конца вектора отняли координаты начала.
→CA(-1;7), аналогично найдем координаты →CB(0-4;6-2), получим
→CB(-4;4)
2. Найдем скалярное произведение векторов →CA*→CB=-1*(-4)+7*4=
4+28=32. перемножил соответствующие координаты и результаты сложил.
3. Найдем длины векторов →CA и →CB, возведем в квадрат координаты, сложим и извлечем корень квадратный из суммы.
I→CAI=√((-1)²+7²)√(1+49)=√50=5√2
I→CВI=√((-4)²+4²)√(16+16)=√32=4√2
4. найдем искомое значение, подставив в формулу (1) все найденные значения.
cos∠C=→CA*→CB/(I→CAI*I→CBI) =32/(5√2*4√2)=8/(5*2)=0.8
ответ 0.8
Поделитесь своими знаниями, ответьте на вопрос:
Боковые стороны трапеции abcd пересекаются в точке к. ab-основание трапеции. треугольник abk - равносторонний. докажите, что разность оснований трапеции равна её боковому ребру
если провести через в прямую ii сd до пересечения с ав в точке м, то треугольник авм подобен треугольнику авк, то есть равносторонний, ав = ам.
при этом ам = ав - вс, что завершает доказательство.