Акимцева27
?>

решить задачи по геометрии​

Геометрия

Ответы

АминаИван

3. угол АОС=90 градусов

4. в-а=50

в+а=180 (это система)

в=50+а

50+а+а=180

2а=130

а=65 градусов.

anyakru94

3. Рассмотрим треугольник АОВ - прямоугольний, угол О - прямой и равен 90 градусов.

Углы ВОА и АОС - смежные и их сумма равна 180 => угол АОС равен 180 - 90 = 90 градусов

Только на первый есть ответ

ВасилийМалюга152
Продлим боковые стороны трапеции до пересечения в точке М.
 Сумма углов при основании треугольника АМВ равна 90°, следовательно, угол АМD  равен 180°-90°=90°
Рассмотрим треугольники АМD и BМC.
Так как ВС|| АD, соответственные углы при их пересечении секущими АМ и DМ равны. Рассматриваемые треугольники  подобны по трем углам. Отсюда АМ:BМ=AD:BC
(10+BМ):BМ=18:6
6*(10+ВМ)=18 ВМ
60+6 ВМ=18 ВМ
12 ВМ=60
ВМ=5
Из С проведем СО параллельно АВ.
В четырехугольнике АВСО противоположные стороны параллельны, ⇒АВСО= параллелограмм, и АО=ВС=6 см, СО=АВ=10 см
Из вершины В проведем прямую ВК  параллельно СD до пересечения с АD. ВМ=ТС=5 ( т.к. ВМСТ- прямоугольник из параллельности его сторон и равенства углов) ⇒
 Т - середина ОС, который равен АВ,
угол ВСТ=углу ТОК как накрестлежащие.
Вертикальные углы при Т - равны.
Следовательно, ⊿ ВТС=⊿ ОТК по двум углам, прилежащим к равной стороне. ⇒
ОК=ВС=6
АО=ОК=6 см
Угол АВК вписанный и  прямой, опирается на АК ⇒ диаметр, О -  его середина.  ⇒
R=  АО=6 см
---------
Но так и напрашивается другое решение, при котором величина АВ как будто бы является лишней.
Если мы проведем ВК параллельно МD. то угол АВК - прямой, опирается на АК , и потому АК - диаметр. Поскольку DК=ВС=6, то  АК=18-6=12, и тогда R=12:2=6 см) 
Трапеция авсd, основания вс и ad; равны 6 и 18; сумма углов при большем основании-90. найдите радиус
troyasport
Рассмотрим треугольник ABD.
BO перпендикулярен AD (по условию задачи), т.е. ∠BOD=∠BOA=90°.
∠ABO=∠DBO (т.к. BE - биссектриса).
Получается, что треугольники ABO и DBO равны (по  второму признаку равенства треугольников).
Следовательно, AB=BD.
Т.е. треугольник ABD - равнобедренный.
BO - биссектриса этого треугольника, следовательно и медиана, и высота (по  третьему свойству равнобедренного треугольника).
Следовательно, AO=OD=AD/2=104/2=52.
Проведем отрезок ED и рассмотрим треугольник BEC.
ED - медиана этого треугольника, так как делит сторону BC пополам.
Площади треугольников EDC и EDB равны (по второму свойству медианы). S EDC= S EDB=(BE*OD)/2=(104*52)/2=52*52=2704
S ABE=(BE*AO)/2=(104*52)/2=2704
Т.е. S ABE=S EDC=S EDB=2704
Тогда, S ABС=3*2704=8112
AD - медиана треугольника ABC (по условию), следовательно делит треугольник на два равных по площади треугольника ABD и ACD (по второму свойству медианы).
S ABD=(AD*BO)/2=S ABC/2
(104*BO)/2=8112/2
BO=8112/104=78
Рассмотрим треугольник ABO, он прямоугольный, тогда применим теорему Пифагора:
AB^2=BO^2+AO^2
AB^2=78^2+52^2
AB^2=6084+2704=8788
AB=√8788=√169*52=√169*13*4=2*13*√13=26√13
BC=2AB=2*26√13=52√13
Рассмотрим треугольник AOE.
OE=BE-BO=104-78=26
Так как этот треугольник тоже прямоугольный, то можно применить теорему Пифагора:
AE^2=AO^2+OE^2
AE^2=52^2+26^2=2704+676=3380
AE=√3380=√20*169=√169*5*4=13*2√5=26√5
Так как BE - биссектриса, то используя ее первое свойство запишем:
BC/AB=CE/AE
52√13/26√13=CE/(26√5)
2=CE/(26√5)
CE=52√5
AC=AE+CE=26√5+52√5=78√5
ответ: AB=26√13, BC=52√13, AC=78√5
как то так. рисунок внизу.
100 ! в треугольнике авс биссектриса ве и медиана ad перпендикулярны и имеют одинаковую длину равную

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

решить задачи по геометрии​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Savelieva24
Alyona744
morozova
porotikova1004
kolyabelousow4059
filantropagv4
enot1975
Ter-Pogosov_Vasilevna
warlordkolomna
zharovaleks
gostivdom302
oyunabaduraeva
Наталья
troyasport
ivanrancev