2,47м BG=54см, AH=64см. Учите геометрию (мастер ее в школе выучил)
Объяснение:
Поскольку AH, BG, CF, DЕ параллельны, то ABGH, BCFG, CDEF - трапеции. Раз EF=FG=GH, то и DC=BC=AB по теореме Фалеса. Кроме того, CF является средней линией трапеции BDEG, а BG - средней линией трапеции ACFH. Средняя линия трапеции равна полусумме оснований.
EF=FG=GH=10cm
AB=DC=CD=7cm
DE=34cm, CF=44cm Тогда BG=54cm (CF=(DE+BG)/2, BG=2CF-DE=2*44-34=54)
2BG=CF+AH, AH=2BG-CF=2*54-44=64cm
AB+BC+CD+DE+EF+FG+GH+AH+BG+CF=7+7+7+34+10+10+10+64+44+54=247см=2,47м
Поделитесь своими знаниями, ответьте на вопрос:
Основание прямой призмы –ромб состороной 12 и углом 150 . Высотапризмы 6 см. Найти площадь полнойповерхности и объем призмы
Точка M, равноудалена от вершин треугольника ABC, поэтому она лежит на перпендикуляре к (ABC), который восстановлен из центра (O) описанной около ΔABC окружности. Треугольник со сторонами 6, 8, 10 является египетским (10²=6²+8²), поэтому ∠B=90°, а значит центр описанной лежит на середине AC. И её радиус равен AC:2=10:2=5.
Как было сказано ранее MO⊥(ABC).
Рассмотри прямоугольный ΔAOM (∠O=90°): AO=5; AM=13. Найдём второй катет MO (расстояние от M до α) по теореме Пифагора (хотя тут опять Пифагорова тройка 5, 12, 13).
MO=√(13²-5²) = √((13+5)(13-5)) = √(18·8) = √(3²·4²) = 12
ответ: 12.