Mikhail_Magomed635
?>

Навколо правильного шестикутника ABCDEF зі стороною 8 см описано коло із центром О. Знайдіть площу сектора, який містить дугу ACE

Геометрия

Ответы

Novikova
Мы знаем, во-первых, теорему Пифагора: a^2 + b^2 = c^2, где a,b - катеты, c - гипотенуза. В нашем случае, раз треугольник равнобедренный, то a=b и теорема примет вид:
a^2 + a^2 = c^2
2 * a^2 = c^2
Во-вторых, мы знаем выражение для площади прямоугольного треугольника: S = 1/2 * a * b (частный случай формулы площади в общем виде, где S = 1/2 * a * h). Зная, что a = b, площадь примет вид:
S = 1/2 * a * a = 1/2 * a^2
Сопоставляя первое и второе выражения, видим, что c^2 = 4 * S
Отсюда, подставляя имеющееся значение:
c^2 = 4 * 50 = 200
c = корень из 200 = 2 * (корень из 10)
Татьяна-Мария

Рисунок - во вложении.

Т.к. E и F - внутренние точки отрезка АВ, и по условию АЕ=BF, то

для EB=AB-AE и для AF=AB-BF следует, что EB=AF.

Рассмотрим прямоугольные ΔADF и ΔВСЕ. У них: 1) АD=BC (противолежащие стороны прямоугольника); 2) AF=EB (по доказанному выше). Значит, ΔADF = ΔВСЕ по двум катетам.

Из равенства этих треугольников следует, что ∠DFA=∠СЕВ. Отсюда, ΔEGF - равнобедренный с основанием EF, тогда GF=GE. Доказан пункт Б).

Т.к. АВСD - прямоугольник, то АВ║CD. Тогда ∠EFG=∠GDC(как накрестлежащие при секущей FD) и ∠FEG=∠GCD (как накрестлежащие при секущей ЕС). Отсюда, ΔDGС - равнобедренный с основанием DC, тогда DG=GC. Доказан пункт A).


Кому не трудно.дано: abcd - прямоугольникae=bfдоказать: а) dg=gcб) gf=ge​

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Навколо правильного шестикутника ABCDEF зі стороною 8 см описано коло із центром О. Знайдіть площу сектора, який містить дугу ACE
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

lukanaft
Columbia777
Александровна1685
ГазалиеваКозак
suxoruchenkovm171
oafanasiev41
козлов
Liliya-buc
santechma
manager6
Smirnovav1982422
filantropagv4
gbfedak220
gilmore886173
di-bobkov1985