Высота прямоугольного треугольника, проведенная к гипотенузе, равна 4 см и делит ее на отрезки, разность которых равна 6 см. Найдите стороны треугольника.
-------
Высота, проведенная к гипотенузе, есть среднее пропорциональное между проекциями катетов на гипотенузу.
Пусть проекция меньшего катета х, проекция большего катета (х+6).
Тогда квадрат высоты равен х*(х+6)⇒
16=х²+6х
х²+6х-16=0
D=100
Решив квадратное уравнение, получим х= 2 и -8 Отрицательный корень не подходит.
Отсюда гипотенуза равна 2+2+6=10 см
Катет есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу.
Пусть меньший катет равен а.
а²=10*2=20
а=√20
Меньший катет=2√5 см
Пусть больший катет равен b
b²=10*8=80
b=√80
Больший катет равен 4√5 см
Поделитесь своими знаниями, ответьте на вопрос:
Найдите площадь треугольника АВС, у которого , СА=18 см, СВ=21 см. угол C=30 градусов
94,5 см²
Объяснение:
Найдём площадь ΔАВС по формуле SΔАВС = (1 / 2) * АС * СВ * sin 30° = (1 / 2) * 18 * 21 * (1 / 2) = 94,5 см²